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Summary 
 

Selenium (Se) is an essential trace element as part of the 21st proteinogenic amino acid 

selenocysteine (Sec) in selenoproteins. Selenoproteins play important roles in redox-

regulating signal pathways, the antioxidant defence, thyroid hormone metabolism and 

immunoregulation. Se-metabolism is controlled by hepatocytes synthesizing and secreting the 

Se-transporter selenoprotein P (SEPP). Circulating SEPP declines in critical illness, e.g. sepsis 

causing low serum Se-levels, which in turn negatively correlates with mortality. Sepsis triggers 

excessive production of pro-inflammatory cytokines including interleukin-6 (IL-6), causing 

oxidative stress, tissue damage and organ dysfunction. Aminoglycoside (AG) antibiotics are 

often applied in severe sepsis in order to fight infection. AG induce mRNA misinterpretation 

including the stop codon UGA. The recoding of UGA and the presence of a selenoprotein-

specific Sec-insertion sequence (SECIS) element within the mRNA are essentially required 

during selenoproteins biosynthesis.  

As liver is the major organ regulating Se-metabolism, the molecular interplay between pro-

inflammatory cytokines (i.e. Interleukin-6 (IL-6), Interleukin-1β, and tumour necrosis factor α), 

aminoglycoside antibiotics (i.e. G418 and gentamicin) and Se-status on selenoprotein 

expression was investigated in hepatocytes.  

IL-6 strongly reduced the level of SEPP mRNA and secreted SEPP in a dose-dependent 

manner. Likewise, expression of selenoenzyme iodothyronine deiodinase type 1 (DIO1) 

declined at the transcript, protein and enzyme activity level. The effects of IL-6 on the 

expression of antioxidative acting glutathione peroxidases (GPX) were isozyme-specific; while 

transcript level of GPX2 increased and those of GPX4 decreased, GPX1 remained unaffected. 

These IL-6-dependent effects were reflected in reporter gene experiments of SEPP, DIO1, 

GPX2, and GPX4 promoter constructs and point to direct transcriptional effects of IL-6. A 

combination of IL-6, Interleukin-1β and tumour necrosis factor α resulted in more prominent 

decrease in SEPP and DIO1 expression, while the induction of GPX enzyme activity was 

greater in comparison to IL-6 alone. These results highlight a redistribution of selenoprotein 

expression in favour of certain selenoproteins of high importance in inflammatory diseases. 

In an attempt to better characterise the effects of AG on selenoprotein translation, the SECIS-

elements of GPX1, GPX4 and SEPP transcripts were cloned into a reporter system and 

analysed for their response to AG and Se. The results indicate that the correct co-translational 

Sec-insertion depends on the Se-status, AG concentration and the specific SECIS-element. 

At both transcriptional and translational levels, SEPP levels were strongly increased in 

response to AG, whereas the expression and enzyme activity of GPX1, GPX2, GPX4 and 
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DIO1 were affected to a lower degree. Analysis with total reflection X-ray fluorescence indicate 

that the Se-content of SEPP was significantly reduced by AG and depends on Se-status. 

Especially the importance of Se-status to overcome the disrupting and suppressing effects of 

AG and pro-inflammatory cytokines is of high clinical relevance. It directly highlights Se-

deficiency as a central risk factor for negative side effects and suggests Se-supplementation 

as a likely meaningful intervention strategy during critical illness.  
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Zusammenfassung 
 

Selen ist ein essentielles Spurenelement, welches seine Funktion in Form der 21. 

proteinogenen Aminosäure Selenocystein (Sec) in Selenoproteinen entfaltet. Selenoproteine 

spielen eine wichtige Rolle in Redox-regulierenden Signalwegen, in der antioxidativen Abwehr, 

im Schilddrüsenhormon-Stoffwechsel und bei Immunreaktionen. Der Selenmetabolismus wird 

von Hepatozyten gesteuert, welche das Selen-Transportprotein Selenoprotein P (SEPP) 

synthetisieren und sekretieren. Das im Blut zirkulierende SEPP nimmt bei kritischen 

Erkrankungen, z.B. der Sepsis ab und führt zu erniedrigten Selenspiegeln, welche wiederum 

mit ansteigender Mortalität assoziiert sind. Sepsis triggert die übermäßige Produktion von 

proinflammatorischen Zytokinen einschließlich Interleukin-6 (IL-6) und daraus resultierendem 

oxidativen Stress, Gewebeschädigung und Organversagen. Zur Infektionsbekämpfung wird 

bei schwerer Sepsis oft ein Aminoglykosid-Antibiotikum (AG) angewendet. AG induzieren 

Fehlinterpretationen der mRNA und insbesondere des Stoppcodons UGA. Eine Rekodierung 

des UGA-Codons und eine Selenoprotein-spezifische Sec-Insertionssequenz (SECIS-

Element) innerhalb mRNA sind während der Selenoproteinbiosynthese unabdingbar.  

 

Da die Leber das wichtigste Organ der Selenregulation ist, wurden in dieser Arbeit die 

molekularen Wechselwirkungen zwischen proinflammatorischen Zytokinen (IL-6, Interleukin-

1β und Tumornekrosefaktor-α), AG (G418 und Gentamycin) und dem Selenstatus mit der 

Selenoproteinbiosynthese in Hepatozyten untersucht. 

 

IL-6 führte zu einer starken Reduktion der SEPP-mRNA und einer IL-6 dosisabhängigen 

Sekretion von SEPP. Parallel dazu reduzierte IL-6 das Transkriptlevel, die Proteinexpression 

und die Enzymaktivität des Selenoenzyms Jodthyronin-Dejodase Typ 1 (DIO1). Die Wirkungen 

von IL-6 auf die Expression der antioxidativ-wirkenden Glutathionperoxidasen (GPX) waren 

isozymspezifisch; während die Transkriptkonzentrationen von GPX2 anstiegen und die von 

GPX4 abnahmen, blieb GPX1 unbeeinflusst. Diese IL-6-abhängigen Effekte spiegelten sich 

auch in Reportergenexperimenten von SEPP-, DIO1-, GPX2- und GPX4-

Promotorenkonstrukten wider und weisen auf eine direkte Transkriptionsregulation durch IL-6 

hin. Eine Kombination von IL-6, Interleukin-1β und des Tumornekrosefaktor-α führte zu einer 

stärkeren Abnahme der SEPP- und DIO1-Expression, sowie andererseits zu einer stärkeren 

Induktion der GPX-Enzymaktivität als durch IL-6 allein. Diese Ergebnisse weisen auf eine 

Umverteilung der Selenoprotein-Expression zugunsten von Selenoproteinen mit hoher 

Bedeutung bei entzündlichen Erkrankungen hin. 
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Um die Wirkungen von AG auf die Selenoprotein-Translation besser zu verstehen, wurden die 

SECIS-Elemente von GPX1-, GPX4- und SEPP-Transkripten in ein Reportersystem kloniert 

und auf eine Regulation durch AG und Se analysiert. Die Ergebnisse zeigen, dass der korrekte 

kotranslationale Einbau von Sec vom Selenstatus, von der AG-Konzentration und dem 

spezifischen SECIS-Element abhängig ist. Auf transkriptionaler und translationaler Ebene 

führten AG zu einem stark erhöhten SEPP-Spiegel, während die Expression und 

Enzymaktivität von GPX1, GPX2, GPX4 und DIO1 nur in geringerem Ausmaß beeinflusst 

wurden. Eine Analyse mittels Totalreflexions-Röntgenfluoreszenz zeigte, dass der Se-Gehalt 

von SEPP signifikant durch AG reduziert und vom Se-Status abhängig war. Insbesondere die 

Bedeutung des Selenstatus zur Überwindung der störenden und unterdrückenden Wirkungen 

von AG und entzündungsfördernden Zytokinen ist von hoher klinischer Relevanz. Es hebt 

Selenmangel als zentralen Risikofaktor für mögliche Nebenwirkungen hervor und verdeutlicht 

die Bedeutung einer ausreichenden Selengabe als sinnvolle Interventionsstrategie bei 

kritischen Erkrankungen. 
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1. Introduction 

1.1. The trace element Selenium 

1.1.1. History of Selenium  
Selenium (Se) is a double-edged sword, an essential trace element and a poisonous 

substance at the same time. In early studies, only the toxic properties had been linked to Se, 

while its positive attributes remained hidden for centuries. In 1937, Moxon et al. published a 

report in which the toxic attribute of Se in livestock-poisoning plants was identified [Oldfield, 

2002]. Presenting as hoof injuries in affected animals, this phenomenon was incorrectly named 

“Alkali disease”. The symptoms were later attributed to excessive Se-accumulation in the 

fodder plants of the affected livestock [Beath, 1935]. In 1957, the view to Se changed towards 

more constructive roles in organisms. It was at this time, the German biochemist Klaus 

Schwarz was investigating the origin of liver necrosis induced in laboratory rats fed on a diet 

were Torula utilis yeast was the protein source. When the researchers replaced the protein 

source with Sacharomyces cerevisiae, the symptoms of liver necrosis vanished. Studies of 

both yeasts revealed that Sacharomyces cerevisiae contained Se as opposed to Torula utilis, 

which did not. This led to the first identification of a Se-deficiency associated disease in animals 

[Schwarz, 1957]. Another milestone was the description of the first Se-containing protein in 

1969, glutathione peroxidase [Flohe, et al., 1973; Rotruck, et al., 1973]. This discovery opened 

new avenues towards a better understanding of the biological role of Se.  

 

1.1.2. Selenium metabolism in mammals 
The intake of Se occurs almost exclusively via daily nutrition. Although various 

selenocompounds are found in the diet, almost all are in the form of selenomethionine (SeMet), 

selenocysteine (Sec), selenate, or selenite. SeMet is a Se-containing analogue of the amino 

acid methionine and is synthesised by plants. The incorporation of SeMet into proteins occurs 

randomly as an alternative to methionine. In some plants, ~90% of Se is in the form of SeMet 

[Cubadda, et al., 2010]. In animals, SeMet intake occurs via vegetable nutrition [McConnell 

and Cho, 1967]. Sec is synthesised in mammals and to a lesser extent by plants as an 

intermediate compound in the reverse transsulfuration pathway [Burk and Hill, 2015; Sors, et 

al., 2005]. In addition to the de novo synthesis, Sec can be taken up via daily nutrition.  

Regardless of the form of the selenocompound, Se is readily absorbed via the lower small 

intestine (Figure 1). SeMet and Sec are resorbed via amino acid transporters [McConnell and 
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Cho, 1967]. The absorption of selenate occurs actively via a sodium-mediated carrier transport 

mechanism, while selenite diffuses passively [Fairweather-Tait, 1997].  

 

Figure 1: Se-metabolism in the human body.The small intestine mainly absorbs the selenocompounds SeMet, 

Sec, selenite or selenite. Selenate becomes directly reduced to selenite. SeMet is randomly incorporated into 

proteins, metabolised to Sec via the transsulfuration pathway or methylated for excretion. Sec and selenite are 

metabolised to selenide (H2Se) and further to mono-selenophosphate (H2PO3SeH) by selenophosphate synthetase 

2 which may enter either the selenoprotein biosynthesis or the excretion pathway. To be excreted, Se becomes 

methylated (mono-(MSe), dimethyl selenide (DMSe) or tri-methyl selenonium (TMSe)) or conjugated with N-actetyl 

galactosamine, followed by the methylation to different selenosugar compounds. The excretion may then occur via 

urine, faeces or breath. Adapted from [Roman, et al., 2014] using Servier Medical Art. 

The absorbed selenocompounds are then transported via the blood stream to the liver. In the 

liver, selenocompounds become reduced to selenide before entering a complex biosynthesis 

machinery, resulting in the incorporation of Se in the form of Sec into so-called selenoproteins 

(section 1.2.). Although Sec is resorbed from the diet, it cannot be directly incorporated into 

selenoproteins. The incorporation requires a conversion of Sec to selenide and alanine by 

selenocysteine lyase. The selenophosphate synthetase 2 which is itself a selenoprotein 

catalyses the conversion from selenide to selenophosphate (H2PO3SeH). Selenophosphate is 

then either incorporated into selenoproteins or eventually excreted [Burk and Hill, 2015]. 

SeMet has three possible fates: 1) reduction to Sec via the transsulfuration pathway, 2) 

unspecific incorporation into proteins, or 3) excretion. Similar to plants, the biosynthesis 

machinery of mammals is unable to distinguish between SeMet and its analogue methionine. 

SeMet is hence incorporated randomly into proteins [Reilly, 2006]. In this context, a ratio of 

one SeMet molecule per 1,1000 albumin molecules has been described in healthy humans 
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[Burk, et al., 2001]. As the intake of SeMet increases, the amount of randomly incorporated 

SeMet at methionine residues in newly synthesised proteins increases accordingly. The half-

life of overall Se in the human body is about 100 days [Griffiths, et al., 1976]. However, its 

retention depends on the Se-status, the general health status, the form of Se ingested and the 

tissue where Se is stored.  

The excretion of Se occurs though the kidney, the gastrointestinal tract, or expiration via the 

lungs. It may also be excreted via the sweat, hair or nails, but mostly via the renal pathway 

[Yang, et al., 1989]. Se in faeces consists largely of non-absorbed dietary Se, combined with 

Se from intestinal, pancreatic and biliary secretions [Levander and Baumann, 1966]. If 

selenoproteins are optimally expressed, a further increase in selenite or selenite intake results 

in an almost complete Se-excretion above this optimum Se-intake level. If the Se-intake 

increases to an unusually high concentration, it becomes excreted via the breath [McConnell 

and Roth, 1966]. Excretory forms of Se are dimethyl selenide in breath, trimethyl selenonium 

in urine and selenosugar (1beta-methylseleno-N-acetly-D-galactosamine) in urine and faeces 

[Kobayashi, et al., 2002; Palmer, et al., 1969; Suzuki, et al., 2010]. They are mainly produced 

from selenide in liver by sequential methylation or conjugation with N-acetyl galactosamine 

and subsequent methylation steps [Mozier, et al., 1988]. However, the major excretory form of 

Se are selenosugars [Burk and Hill, 2015].  

 

1.1.3. Selenium and human health 
The Se-range between levels of dietary deficiency (< 40 µg Se/day) and toxic levels (>400 µg 

Se/day) is rather narrow [WHO, 1996]. An optimal Se-supplementation is U-shaped and 

ranges between 80-120 µg/L Se, with border zones of 60-80 µg/L Se and 120-140 µg/L Se 

(Figure 2) [Duntas and Benvenga, 2015]. A serum Se-concentration below 60 µg/L Se 

increases the risk for diseases and seems to aggravate ailments such as inflammation, 

autoimmunity, cancer, infertility or Se-deficiency associated diseases. Concentrations above 

140 µg/L increase the risk of hyperglycaemia, type 2 diabetes, hyperlipidaemia or 

atherosclerosis and may also result in Se-intoxication, also known as selenosis [Duntas and 

Benvenga, 2015; Rayman, 2012].  

Two Se-deficiency associated diseases have been described in humans, namely Keshan-

disease and Kashin-Beck disease. Keshan-disease is characterised by a cardiomyopathy with 

multiple foci of necrosis closely associated with a dietary deficiency of Se [Lei, et al., 2011] and 

the presence of coxsackievirus B3 [Beck, et al., 2003]. Crops in the patients diet have been 

shown to be exceptionally Se-deficient (<0.04 mg/kg of Se) and Se-intake was less than 12 
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µg/day (40 µg/day required) [Li, et al., 2013]. The Keshan-disease is more prominent in farming 

communities being more reliant to their Se-deficient environment and resulting in Se-deficient 

food. Thus far Keshan-disease has mostly afflicted children and women in the region of Keshan 

in China [Chen, 2012]  

 

Figure 2: Se-intake and health risks. 

Se-intake has a narrow range between dietary deficiency (< 40 µg/day) and toxic levels (> 400 µg/day). An optimal 

nutritional Se-intake ranges between 80-120 µg/L with a border zones of 60-80 and 120-140 µg/L Se. Serum Se-

concentrations below 60 µg/L increase the risk for inflammation, autoimmunity, cancer, infertility or Se-deficiency 

associated diseases (Keshan-disease and Kashin-Beck disease). Concentrations above 140 µg/L increase the risk 

for hyperglycaemia, type 2 diabetes, hyperlipidaemia or atherosclerosis and may result in Se-intoxication, also 

known as selenosis or “Alkali-disease”. Adapted from [Duntas and Benvenga, 2015; Moreno-Reyes, et al., 2003; 

Oldfield, 2002] 

The Kashin-Beck disease is an osteochondropathy disease that is associated with iodine- and 

Se-deficiency. Patients suffer from joint deformations that affect peripheral joints and the spine. 

They are typically of short stature as a result of multiple focal necrosis in the growth plates of 

the tubular bones [Allander, 1994]. Se-deficiency is also associated with iodine deficiency 

disorders goitre and cretinism [Fordyce, 2013]. In rats, Se-deficiency caused an inhibition in 

hepatic deiodination of the thyroid hormone thyroxine (T4) [Beckett, et al., 1987]. The 

selenoprotein family of iodothyronine deiodinases are essential to the thyroid hormone 

metabolism. Thus, Se-supplementation can protect against Hashimoto’s thyroiditis and 

positively affect mild Graves’ disease [Rayman, 2012].  
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Se is also important for male fertility. Low Se-levels reduce the activity of the selenoenzyme 

glutathione peroxidase 4 (GPX4) that is essential for spermatogenesis [Rayman, 2012] or may 

cause immotile and deformity of sperm [Hawkes and Turek, 2001]. The role of Se in cancer is 

controversial as Se is associated with carcinogenic and anti-carcinogenic properties. In animal 

studies, selenite and organic selenocompounds reduced the incidence of diverse tumours. 

Similarly, protective properties of Se have been described against bladder, colorectal, lung, 

and prostate cancer possibly due to Se’s antioxidant properties and the inhibition of nucleic 

acid and protein synthesis that is important to tumour growth [Clark, et al., 1998; Rayman, 

2012]. On the other hand, Se may promote cancer based on the pro-oxidant mutagenic and 

immunosuppressive action of some selenocompounds. Selenium sulphide has been linked to 

carcinogenic effects in animal studies and with potential to act as a human carcinogen 

[Fordyce, 2013].  

Initial descriptions of Se-toxicity can date back as far as the travels of Marco Polo who 

described poisonous plants that have been later found to store toxic amounts of Se and “if 

eaten by horses causes the hoofs to drop of” [Mihajlovic, 1992]. Further descriptions of hoof 

disorders in livestock have been reported in Columbia in 1560 and South Dakota in the mid-

19th century which became known as “Alkali-disease” [Reilly, 2006]. As aforementioned, 

“Alkali-disease” is characterised by hoof deformation, hair loss and hypochromic anaemia 

[Fordyce, 2013; Levander, 1986]). In the 1930’s, “Alkali-disease” became known as selenium 

toxicosis (selenosis) [Fordyce, 2013; Oldfield, 2002]. Cases of selenosis in humans are rare. 

However, one case study has related the intake of nuts of the Lecythis ollaria tree grown in 

Se-rich areas of Venezuela can induce vomiting and diarrhoea followed by hair and nail loss 

and death of two-year-old boys [Muller and Desel, 2010]. Cases of intoxication have further 

been reported in the USA as a result of faulty and miscalculated Se-supplementation of tablets 

causing nausea, vomiting, abdominal pain, diarrhoea, hair loss, brittle nails and peripheral 

neuropathy [MacFarquhar, et al., 2010; Morris and Crane, 2013]. 
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1.2. Selenoproteins 

1.2.1. Selenoprotein classification and function 
Se plays a fundamental role in the maintenance of immune-endocrinology, metabolic and 

cellular homeostasis, which is mediated by selenoproteins [Brown and Arthur, 2001]. The 

selenoprotein family is characterised by the incorporation of the 21st proteinogenic amino acid 

Sec into the growing peptide chain. Selenoproteins are widely spread through all domains of 

life, i.e., in eubacteria, archaea and eukarya [Labunskyy, et al., 2014] ranging from one 

selenoprotein as found in Caenorhabditis elegans [Taskov, et al., 2005] to 59 as found in 

Aureococcus anophageffenes [Gobler, et al., 2013]. It is interesting to note that selenoproteins 

are not expressed in fungi and some animal species (e.g. red flour beetle Tribolium castaneum 

and the silkworm Bombyx mori) [Labunskyy, et al., 2014; Lobanov, et al., 2008]. The human 

selenoproteome is composed of 25 selenoprotein genes including the Se-transporter 

Selenoprotein P (SEPP), the family of glutathione peroxidases (GPX), the family of thioredoxin 

reductases (TXNRD), the family of iodothyronine deiodinases (DIO) and other selenoproteins 

with partially unknown function. 

 

Selenoprotein P 

Selenoprotein P (known as SEPP, SelP, SEPP1 or SELENOP) is a plasma selenoprotein 

which circulates as two isoforms and acts as the main Se-transporter in the body. In contrast 

to all other selenoproteins described, SEPP comprises some unique features, i.e., two SECIS-

elements in the 3’untranslated region (UTR) of the mRNA and ten in-frame UGA codons 

allowing a maximal insertion of up to ten Sec-residues (Figure 3). The SEPP protein consists 

of two major domains, an N-terminal and a shorter Sec-rich C-terminal. The N-terminal domain 

carries one of the ten Sec-residues and a heparin-binding site that has peroxidase activity 

when bound to TXNRD1 [Kurokawa, et al., 2014]. The C-terminal domain possesses the 

remaining nine Sec-residues and is thus implicated in the Se-transport. The two SECIS-

elements (SECIS1 and SECIS2) in the 3’UTR of the transcript have a different function with 

respect to supporting Sec-insertion in response to different UGA codons as described in 

section 1.2.2 [Stoytcheva, et al., 2006].  
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Figure 3: Schematic overview of Sec-insertion into SEPP. 

The SEPP protein consists of two domains, an N-terminal and a shorter Sec-rich C-terminal. The N-terminal domain 

contains the first Sec-residue, whereas the C-terminal domain encompasses the second to the tenth Sec-residue. 

Two Sec-insertion sequence (SECIS)-elements, namely SECIS1 and SECIS2 are found in the 3’UTR of the SEPP 

mRNA. In a co-translational process, the SECIS-element, along with additional binding factors, mediates the Sec-

incorporation at the side of the UGA codon. SECIS1 is required for the C-terminal, SECIS2 for the N-terminal 

insertion of Sec-residues. The N- and C-terminal domains are separated via two histidine (His)-rich areas. Modified 

from [Saito, et al., 2004]. 

SECIS2 is mandatory for the insertion of the first Sec-residue in the N-terminal domain, 

whereas SECIS1 is required for the insertion of the second to the tenth Sec-residue in the C-

terminal domain. SECIS2-mediated Sec-incorporation is less efficient than SECIS1 [Berry, et 

al., 1993] resulting in a slower and potentially unsuccessful Sec-insertion at the first UGA 

codon. Once the ribosome reaches the second UGA codon, the SECIS2-mediated Sec-

incorporation occurs rapidly allowing the insertion of the remaining Sec-residues in the shorter 

C-terminal domain [Burk and Hill, 2009].  

90% of the synthesised SEPP is secreted by the liver [Burk and Hill, 2009; Hill, et al., 2012]. 

SEPP is then transported via the blood stream to peripheral Se-dependent organs including 

testes, kidney, brain or bone. At these peripheral organs SEPP is taken up by a member of the 

low-density lipoprotein receptor-related family, i.e., apolipoprotein E receptor-2 (apoER2 or 

LRP8) or megalin (LRP2) via endocytosis [Olson, et al., 2008; Olson, et al., 2007]. These 

receptors have different SEPP binding properties and different tissue expression pattern. LRP2 

interacts with the N-terminal domain of SEPP thereby allowing the uptake of smaller SEPP 
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isoforms e.g. in the kidney [Kurokawa, et al., 2014]. The apoER2 receptor interacts with the C-

terminal domain and is present at blood-brain barrier and in neurons [Burk, et al., 2014].  

 

Glutathione peroxidases  

The family of glutathione peroxidases (GPX) are widespread in all domains of life [Toppo, et 

al., 2008] and consists of eight isozymes of which five are selenoproteins: the cytosolic GPX 

(cGPX or GPX1), the gastrointestinal GPX (giGPX or GPX2), the plasma GPX (pGPX or 

GPX3), the phospholipid hydroperoxide GPX (PHGPX or GPX4) and olfactory GPX (GPX6). 

GPX are involved in hydrogen peroxide signalling, detoxification of hydroperoxides, and 

maintaining redox homeostasis. Hydrogen peroxide is an important signalling molecule that 

regulates a variety of processes and pathways, e.g. cell proliferation, apoptosis or stress 

response [D'Autreaux and Toledano, 2007], but can adversely induce oxidative tissue damage. 

Although all GPX catalyse the reduction of the hydrogen peroxide and alkyl hydroperoxides 

under the oxidation of glutathione, they markedly differ in their specificities for hydroperoxide 

[Brigelius-Flohe, 1999]. 

In 1973, Rotruck et al. and Flohé et al. described glutathione peroxidase (formerly GPX, now 

GPX1) as the first eukaryotic selenoprotein [Flohe, et al., 1973; Rotruck, et al., 1973]. GPX1 is 

expressed ubiquitously in all cell types showing the highest expression in liver and kidney. 

GPX1 catalyses degradation of soluble hydroperoxides, such as hydrogen peroxide or some 

organic hydroperoxides and thus prevents oxidative damage, lipid peroxidation and protein 

degradation. GPX1 belongs to the stress-related selenoproteins and is highly Se-sensitive 

[Baker, et al., 1993; Sunde, et al., 2009]. Its expression drops dramatically under Se-deficiency, 

especially in liver and kidney. GPX2 is mainly expressed in the epithelium of the 

gastrointestinal tract and is known to have anti-inflammatory and anti-carcinogenic properties 

[Brigelius-Flohe, 2006]. Its expression levels are negatively associated with tumour growth in 

different tissue types [Ewen and Hendry, 1990]. GPX3 is primarily expressed in the kidney and 

secreted into the plasma where it contributes to extracellular detoxification [Brigelius-Flohe, 

1999]. GPX6 is expressed in the olfactory epithelium, and during embryogenesis [Kryukov, et 

al., 2003]. Interestingly, the Sec-residue in GPX6 is replaced by cysteine in some species, e.g. 

in rodents [Kryukov, et al., 2003]. GPX1, 2, 3 and 6 have a substrate specificity for hydrogen 

peroxide, and other soluble low-molecular weight hydroperoxides, e.g. tert-butyl 

hydroperoxide, cumene hydroperoxide, and short-chain fatty acid hydroperoxide, whereas 

GPX4 has substrate specificity for phospholipid hydroperoxides, e.g. phosphatidylcholine 

hydroperoxide or cholesterol hydroperoxide and other complex lipid hydroperoxides [Brigelius-
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Flohe, 1999; Mates, 2000]. GPX4 is ubiquitously expressed during embryogenesis and in 

several adult tissues. In contrast to the Se-sensitive GPX1, GPX4 is less affected by the Se-

status and belongs therefore to the housekeeping selenoproteins [Bermano, et al., 1995; 

Weiss Sachdev and Sunde, 2001]. GPX4 has three isoforms in which the mitochondrial and 

nuclear isoforms are only expressed in testes where it is essential for male gametogenesis 

[Schneider, et al., 2009].  

 

Thioredoxin reductases 

Thioredoxin reductases (TXNRD) catalyse the NADPH-dependent reduction of the redox 

protein thioredoxin (TRX). TRX acts as an antioxidant by reducing other proteins including 

peroxidases and ribonucleotide reductases and thus controls cellular redox state and protects 

against oxidative damage [Arner and Holmgren, 2000]. TXNRD are able to catalyse the 

reduction of other endogenous and exogenous compounds including glutathione and 

glutaredoxin. The wide substrate specificity of TXNRD is enabled by a second redox-active 

site within the catalytic centre. Three isozymes of TXNRD have been described in mammals: 

the cytoplasmic thioredoxin reductase 1 (TR1 or TXNRD1) [Tamura and Stadtman, 1996], the 

mitochondrial thioredoxin 3 (TR3 or TXNRD2) [Miranda-Vizuete, et al., 1999] and thioredoxin 

reductase 2 (TR2 or TXNRD3) that is exclusively expressed in testes [Miranda-Vizuete, et al., 

2004]. Thioredoxin 1 (TRX1) is involved in antioxidative defence, regulation of transcription 

factors and apoptosis [Arner and Holmgren, 2000]. It serves further as an electron donor for 

several redox-active enzymes and is the major substrate of TXNRD1. In addition to TRX1, 

TXNRD1 catalyses the reduction of other low-molecular weight compounds [Arner and 

Holmgren, 2000]. In 1999, Sun et al. revealed that the Sec-residue of TXNRD1 functions as a 

sensor for reactive oxygen species [Sun, et al., 1999]. It has been shown that TXNRD1 

activates the p53 tumour suppressor [Merrill, et al., 1999], and it therefore implicated in cancer 

prevention [Selenius, et al., 2010]. Controversially, TXNRD1 plays a role in tumour growth due 

to the high susceptibility of cancer cells to oxidative stress [Mandal, et al., 2010]. Furthermore, 

the thioredoxin system plays an important role in the regulation of several transcription factors 

such as NF-κB or AP-1 via modulating the intracellular redox levels [Arner and Holmgren, 

2000]. 
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Iodothyronine deiodinases   

The family of iodothyronine deiodinases (DIO) is composed of: type I iodothyronine deiodinase 

(DIO1), type II iodothyronine deiodinase (DIO2) and type III iodothyronine deiodinase (DIO3). 

DIO are involved in the regulation of thyroid hormone (TH) activity by reductive deiodination. 

TH are involved in a diversity of processes during developing and in the adult organism, e.g. 

increasing cardiac output, heart rate, ventilation rate, and basal metabolic rate. The majority 

of the TH effects are mediated by nuclear TH receptors that have a high affinity for 3,3’,5 

triiodothyronine (T3) [Darras and Van Herck, 2012]. However, the thyroid gland produces 

primarily the biological inactive thyroid prohormone thyroxine (T4). The inactive prohormone 

T4 becomes activated by a 5’-deiodination reaction at the phenolic ring. This deiodination can 

be catalysed by DIO1 or DIO2 and results in the active T3 [Bianco, et al., 2002]. While DIO2 

solely catalyses the deiodination at the phenolic ring, DIO3 exclusively targets the tyrosyl ring. 

DIO1 is the only DIO isozyme that catalyses both the phenolic and tyrosyl ring deiodination. 

With its specificity DIO3 is able to inactive both T3 and T4 to generate 3,3’ T2 or reverse T3 

(rT3). It is assumed that the circulating concentrations of TH are primarily regulated by DIO1 

with a fine tuning of local T3 levels by DIO2 and DIO3 in a tissue-specific manner [Gereben, 

et al., 2008]. The local fine tuning is important for tissue regeneration after injury or tissue 

development, e.g. endochondral bone formation [Adams, et al., 2007]. The activity of DIO2 

increases in muscle after injury and is associated with enhanced transcription of T3-dependent 

genes required for muscle differentiation and regeneration [Dentice, et al., 2010]. 

 
Table 1: Enzymatic function and expression pattern of the human selenoproteins  

[Wrobel, et al., 2016]. 

Selenoprotein Abbreviation Function Tissue 
Glutathione 
peroxidases 

GPX   

Cytosolic GPX GPX1 Detoxification of hydrogen 
peroxide 

ubiquitous  

Gastrointestinal 
GPX 

GPX2 Detoxification of hydrogen 
peroxide 

epithelium of 
intestine 

Extracellular GPX GPX3 Detoxification of hydrogen 
peroxide 

secretion from 
kidney to plasma 

Phospholipid 
hydroperoxide GPX 

GPX4 Inhibition of lipid 
peroxidation 

wide expression 
range, testes 

Glutathione 
peroxidase 6 

GPX6 Detoxification of hydrogen 
peroxide 

olfactory epithelium 
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Thioredoxin 
reductases 

TXNRD   

Cytosolic TXNRD TXNDR1 Reduction of the oxidized 
form of cytosolic thioredoxin 

ubiquitous 

Mitochondrial 
TXNRD 

TXNRD2 Formation/isomerization of 
disulphide bonds during 
sperm maturation 

liver, kidney, heart 

TR2 TXNRD3 Reduction of mitochondrial 
thioredoxin and 
glutaredoxin 2 

testes 

Iodothyronine 
deiodinases  

DIO   

Type I DIO DIO1 Deiodination of T4 to T3 or 
to rT3, and of T3 or rT3 to 
T2 

thyroid gland, liver, 
kidney, pituitary 

Type II DIO DIO2 Deiodination of T4 to T3 thyroid, brain, 
muscle, heart 

Type III DIO DIO3 Deiodination of T4 to rT3 
and T3 to T2 

Brain, muscle, 
placenta 

Other 
selenoproteins 

   

Selenoprotein H SELH Regulation of GSH 
synthesis and phase II 
detoxification enzymes 

ubiquitous 

Selenoprotein I SELI unknown ubiquitous 
Selenoprotein K SELK ER-associated degradation 

of misfolded proteins 
heart, spleen, 
testes 

Selenoprotein M SELM Rearrangement of 
disulphide bonds in the ER-
localized proteins 

brain 

Selenoprotein N SELN Regulation of intracellular 
calcium mobilization 

mainly muscle 

Selenoprotein O SELO unknown unknown 
Selenoprotein P SEPP Se transport, antioxidant 

function 
liver, brain, etc. 

Selenoprotein R SELR Repair of oxidized 
methionine in proteins 

mainly liver and 
kidney 

Selenoprotein S SELS ER-associated degradation 
of misfolded proteins 

ubiquitous 

Selenoprotein T SELT Regulation of pancreatic b-
cell function and glucose 
homeostasis 

ubiquitous 

Selenoprotein V SELV unknown testes 
Selenoprotein W SELW Redox regulation of 14-3-3 

protein 
ubiquitous 

Selenophosphate 
synthetase 2 

SPS2 Synthesis of 
selenophosphate 

ubiquitous 

15 kDa 
selenoprotein 

SEP15 Quality control of protein 
folding 

mainly kidney and 
liver 
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Other selenoproteins 

Ten other selenoproteins with partially known functions have been identified in humans. Out 

of these ten, seven selenoproteins are located in the endoplasmic reticulum (ER). These 

proteins are involved in protein folding, maturation, quality control and cytokine response to 

stress or ER-stress regulation [Shchedrina, et al., 2010]. Selenoprotein S (SELS) for example 

contributes in the processing and removal of misfolded proteins from the ER into the cytosol. 

Translocated, misfolded proteins become polyubiquitinated and then degraded by the 

proteasome [Ye, et al., 2004]. SELS expression is activated according to ER stress or NF-κB 

signalling. Moreover, it plays an essential role in the production of inflammatory cytokines [Gao, 

et al., 2006]. Selenoproteins are further involved in the synthesis of selenophosphate or 

regulation of intracellular calcium mobilisation [Wrobel, et al., 2016].  

  



Introduction 

 

 26 

1.2.2. Selenoprotein biosynthesis 
Selenoproteins are characterised by the co-translational insertion of the 21st proteinogenic 

amino acid Sec. The Sec-incorporation into selenoproteins is highly regulated by a multistep 

biosynthesis machinery requiring a specifically modified Sec-tRNA[Ser]Sec, an in-frame UGA 

codon, a selenoprotein specific stem-loop structure within the 3’UTR of the mRNA, the Sec-

insertion sequence (SECIS)-element, and several selenoprotein synthesis specific 

biosynthesis proteins.  

 
Figure 4: The selenoprotein biosynthesis machinery. 

(A) Charging of Sec-tRNA[Ser]Sec: The tRNA[Ser]Sec is charged with serine (Ser) by seryl-tRNA(Ser/Sec) synthetase 

(SerRS) to generate seryl-tRNA. The seryl residue becomes phosphorylated by O-phosphoseryl-tRNA(Sec) kinase 

(PSTK). Monoselenophosphate acts as Se-donor and is metabolised by selenocysteinyl-tRNA(Sec) synthetase 

(SecS) to yield Sec-tRNA[Ser]Sec. (B) Sec-incorporation: The mRNA of selenoproteins contains an in-frame UGA stop 

codon and hairpin-structured Sec-insertions sequence (SECIS)-element in the 3’UTR. The Sec-specific elongation 

factor (EFsec) binds to the Sec-tRNA[Ser]Sec and the SECIS-element interacts with the SECIS-binding protein 2 

(SBP2). When the UGA is recognised by the ribosome, EFsec interacts with SBP2 and induces Sec-incorporation 

into the growing peptide chain. Figure produced using Servier Medical Art. 

The selenoprotein biosynthesis is initiated by the charging of the selenoprotein specific tRNA 

Sec-tRNA[Ser]Sec (Figure 4 A). The tRNA[Ser]Sec is first loaded with the amino acid serine (Ser). 

This charging is catalysed by the seryl-tRNA(Ser/Sec) synthetase (SerRS). The seryl-residue 

becomes then phosphorylated by the O-phosphoseryl-tRNA(Sec) kinase (PSTK). In the last 

step, the selenocysteinyl-tRNA(Sec) synthase (SecS) catalyses the replacement of the 

phosphoryl group by the highly active monoselenophosphate, metabolised from different 
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selenocompounds including dietary Sec (Figure 1), to yield selenocysteyl-tRNA (Sec-

tRNA[Ser]Sec) [Allmang and Krol, 2006]. 

 

The principle of Sec-incorporation requires the recoding of the stop codon UGA (Figure 4 B) 

with the help of the SECIS-element within the 3’UTR of the mRNA. The presence of the SECIS-

element itself does not necessarily lead to Sec-incorporation. The SECIS-element is 

recognised by the SECIS-binding protein 2 (SBP2). In parallel, the Sec-specific elongation 

factor (EFsec) binds to the Sec-tRNA[Ser]Sec. If an in-frame UGA codon is recognised by the 

ribosome, the loaded EFsec interacts with the SBP2. The formed Sec-insertion complex enters 

the ribosome and leads to Sec-incorporation into the growing peptide chain [Allmang and Krol, 

2006].  

 

1.2.3. Hierarchy of selenoproteins 
The concept of selenoprotein hierarchy postulates that changes in the Se-status affect the 

synthesis of selenoproteins to a different and protein-specific degree. As Se is the limiting 

factor of selenoprotein biosynthesis, the expression of some selenoproteins becomes 

dramatically down-regulated in order to guarantee the full expression of others. This 

hierarchical concept is accomplished by different cis-acting factors, i.e., the UGA context, the 

SECIS-element and trans-acting factors, i.e., tRNA[Ser]Sec, SBP2 or EFsec. Ribosomal profiling 

has revealed that Se-deficiency inhibits the UGA readthrough efficiency of some 

selenoproteins more intensively than others [Howard, et al., 2013]. The UGA codon context, 

also known as Sec-redefinition element (SRE), modulates the Sec-insertion efficiency albeit 

its mechanism is yet not fully understood [Howard, et al., 2007]. Additionally, the SECIS-

element which helps in recoding the UGA codon shares some similarities (e.g. basic structure 

composed of two loops, conserved SECIS-core containing four non-Watson–Crick base pairs), 

but also displays some selenoprotein transcript-specific structural properties (e.g. additional 

bulge in the apical loop) [Bulteau and Chavatte, 2015]. These structural differences affect the 

binding of trans-acting factors thereby modifying the translation efficiency. The transcripts of 

GPX1, SELW and SELH are the most sensitively affected mRNA [Howard, et al., 2013; Sunde, 

et al., 2009].  

Se-deficiency promotes the targeting of mRNA of Se-sensitive, low hierarchic selenoprotein 

transcripts for degradation by nonsense-mediated decay (NMD). The NMD targets aberrant 

mRNA with premature termination codons, as they are present in selenoprotein transcripts in 

the form of in-frame UGA codons, in order to reduce errors in gene expression [Seyedali and 

Berry, 2014]. As a result, GPX1 ranks near the bottom in this hierarchy, together with SELH, 



Introduction 

 

 28 

SELW and SEPX1 [Howard, et al., 2013]. While GPX2 and GPX4 have shown to rank higher, 

SEPP and DIO1-3 are positioned in the middle of the hierarchical order [Wingler, et al., 1999]. 

The hierarchy of selenoproteins extends to the preference of Se-supply and Se-retention for 

different organs, with a greater priority for brain and testes [Burk and Hill, 2015]. An additional 

factor that contributes to the selenoprotein hierarchy is the methylation status of the tRNA[Ser]Sec 

that strongly depends on the Se-status. The methylated isoform is predominantly expressed 

under high Se-supply [Diamond, et al., 1993]. Each isoform is preferred by different 

selenoproteins [Carlson, et al., 2007].  Conditions such as acute phase reaction and oxidative 

stress are likely to alter this selenoprotein hierarchy [Burk and Hill, 2015]. 

 

1.2.4. Biomarker of selenium status 
A biomarker is defined as a biologically derived indicator of biologic or pathogenic processes, 

or of the pharmacologic response to therapeutic interventions [Biomarkers Definitions Working, 

2001; Sunde, 2010]. In a recent review, Sunde et al. described the hierarchal expression of 

any informative biomarker at different levels of Se-exposure [Sunde, 2010]. Accordingly, Se-

intake, tissue Se-concentrations, Se-function in form of selenoproteins and Se-excretion are 

informative parameters and may serve as biomarkers at different levels of Se-exposure. The 

Se-intake is determined via the amount of ingested Se-containing food, water or other 

supplements. The Se-metabolism in humans is more difficulty to study than in experimental 

animals, as SeMet can be excluded in animal studies and Se-forms in dietary products may 

vary regional [Burk and Hill, 2015]. 

Se in tissue can be determined from whole blood, plasma, serum, erythrocytes, buccal cells, 

lymphocytes, nail and hair. Hair and nails offer access to a long-term Se-status. Unregulated 

components introduce background noise for example, anti-dandruff shampoos containing 

selenium sulphide may adulterate the Se-status [Navarro-Alarcon and Cabrera-Vique, 2008]. 

Se-function is monitored in the form of selenoproteins in tissue or plasma as described below. 

Lastly, Se-excretion can be determined in urine in the form of total Se, selenosugar or 

methylated Se, in faeces in the form of total Se and in breath in the form of methylated selenide. 

The level of excreted Se gives conclusions about non-absorbed Se, non-retained Se or 

excessive Se-intake [Combs, 2015].  

Serum Se is the most commonly used biomarker for Se-status and can be either monitored in 

the form of total Se or selenoproteins. In humans, GPX1 and the plasma selenoproteins GPX3 

and SEPP are the most useful selenoproteins. GPX1 is highly sensitive to Se-deficiency and 

a drop in Se-status can rapidly be monitored by the GPX1 mRNA isolated from buccal cells, 
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erythrocytes or lymphocytes [Combs, 2015]. The Se-concentration in buccal cells is 

significantly related to Se-intake [Combs, et al., 2011]. However, GPX3 and SEPP status can 

be easier determined from blood. GPX3 and SEPP concentrations fall dramatically with 

increasing Se-deficiency [Yang, et al., 1989]. Hill et al. estimated a Se-plasma level of 80 

ng/mL when both plasma selenoproteins are maximally expressed, whereas GPX3 shows a 

maximum activity at lower plasma Se-concentration [Hill, et al., 1996]. SEPP is thus the better 

biomarker for Se-status, but any extra increase in Se-level may not be quantifiable using these 

selenoproteins. However, the Se-status in the plasma of Se-deficient subjects respond to Se-

supplementation in ratio to the extent of supplementation [Xia, et al., 2005], whereupon the 

relationship of intake and plasma level also depends on the consumed selenocompound. E.g. 

inorganic Se produces only increase of 20% in individuals with Se-concentration > 70 µg/L 

[Broome, et al., 2004; Burk, et al., 2006], while SeMet and Sec increase Se-plasma level in a 

wider concentration range.  

The Se-status in plasma may also comprise a genetic component. In this respect, the GPX1 

679T/T allele is associated with increased cancer risk [Hu and Diamond, 2003; Ratnasinghe, 

et al., 2000], and the carriers show lower plasma Se-concentrations than the GPX1 679C/C 

carriers [Combs, et al., 2012]. Individuals with the SEPP 24731 A/A allele have up to 27% 

higher plasma SEPP-concentrations than SEPP 24731 G/A or G/G carriers [Combs, et al., 

2011]. The plasma Se-concentrations vary also with gender, decline with age, with a marked 

reduction in smokers [Lloyd, et al., 1983], subjects with protein malnutrition [Mathias and 

Jackson, 1982] and inflammation [Maehira, et al., 2002]. Taken together, these factors are 

likely to alter the strong correlation between plasma SEPP- and Se-concentrations and make 

it therefore necessary to determine both biomarkers for the identification of health risk. 
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1.3. Selenium and selenoproteins in critical illness 
 

1.3.1. Critical illness: Systemic inflammation and sepsis 
The term critical illness is not easy to define, but comprehends to the greatest possible extent 

life-threatening diseases, e.g. cancer, severe trauma or severe infectious diseases such as 

sepsis. Sepsis is serious bloodstream infection that can quickly become life-threatening and is 

among one of the major causes of death in intensive care units. Sepsis mainly arises from 

bacterial, but also viral and fungal infections. These infections can emanate from skin, lungs, 

abdomen, urinary tract and/or medical invasive procedures, e.g. catheter [Hall, et al., 2011]. In 

the USA alone, over one million individuals are afflicted by sepsis. With a mortality rate of 28-

50% annually, sepsis has a higher mortality rate than that of cancer or AIDS [Hall, et al., 2011]. 

Sepsis can strike anyone, but certain sections of society are especially vulnerable including 

the very young (< one year), the elderly (>75 years), frail people including subjects with 

impaired immune system, or after invasive procedures [Centre, 2016]. Although the health 

system has massively improved over the last decades, the incidence of sepsis is increasing 

partly due to an aging population, the increased longevity of people with chronic diseases and 

the spread of antibiotic-resistant organisms. 

Based on the ACCP/SCCM consensus conference, sepsis is diagnosed when two of the 

following criteria are given (Table 2, 1), a-d) and a source of infection has been proven by 

laboratory evidence of inflammation (Table 2, 2). 

Table 2: Diagnosis criteria for sepsis  

1) Two of the following criteria: 
a) fever (≥38°C) or hypothermia (≤36°C) 

b) tachycardia heart frequency ≥90 /min;  

c) tachypnea (frequency ≥20/min) or hyperventilation (PaCO2 ≤4.3 kPa/ ≤33 mmHg) 

d) leucocytosis (≥12000/mm3) or leukopenia (≤4000/mm3) or ≥10% immature neutrophils in the 

haemogram [Bone, et al., 1992] 

2) In combination with laboratory evidence of inflammation, i.e. elevated IL-6, CRP or PCT 
 

Clinical criteria include the determination of early markers of bacterial infection, e.g. elevation 

in C-reactive protein (CRP), procalcitonin (PCT) or the pro-inflammatory cytokine Interleukin-

6 (IL-6). In case of a lack of infection, the patient is alternatively diagnosed with systemic 

inflammatory response syndrome (SIRS). However, an early clinical intervention is necessary 

and includes at first the treatment with broad-spectrum antibiotics. Many patients suffer from 

oxidative stress [Reddell and Cotton, 2012]. Oxidative stress is caused by reactive oxygen or 

nitrogen-oxygen species that trigger systemic inflammation and lead to mitochondrial 
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dysfunction, tissue injury, organ failure and death [Galley, 2011; Heyland and Dhaliwal, 2005; 

Jones and Heyland, 2008]. The classic sepsis treatment is supported by immune-enhancing 

diets and pharmaconutrition, with an administration of antioxidants and cofactors that are 

dosed separately from the standard nutritional requirement [Dupertuis, et al., 2009; Jones and 

Heyland, 2008]. Antioxidants require cofactors including zinc, iron, Se, vitamin C and E 

[Santora and Kozar, 2010]. Arginine for example serves as an enhancer for T-cell function and 

is an important substrate for nitric oxide production [Santora and Kozar, 2010]. Depleted levels 

of arginine lead to decreased T-cell function and increased risk of infection [Jones and 

Heyland, 2008]. Zinc plays a role in immune function, wound healing, superoxide dismutase 

and glutathione activity and thiol pool stabilization [Luo, et al., 2008]. Low serum zinc levels 

are linked to immune dysfunction, higher infection rates and increased mortality after infections 

[Heyland, et al., 2008]. Se-supplementation is thought to improve the clinical outcomes in 

clinical illness by decreasing infectious complications and organ dysfunction [Taylor and 

Krenitsky, 2010] as described in section 1.3.3. 

 

1.3.2. Selenium and the immune system 
Se has an important role in the innate and adaptive immune system. The activation of immune 

cells through cell surface or intracellular receptors can lead to high levels of reactive oxygen 

species (ROS) within minutes, which is often referred to as an oxidative burst [Huang, et al., 

2012]. The generation of ROS by immune cells is connected with the killing of microbes by 

phagocytes. ROS, that are produced by macrophages and neutrophils, are essential for the 

oxidative destruction of phagocytosed pathogens and a fully functional immune system 

[Huang, et al., 2012]. In T-cells, higher dietary Se produces stronger oxidative burst in 

response to T-cell receptor stimulation [Hoffmann, et al., 2010]. 

Immune cells express many, but not all selenoproteins [Huang, et al., 2012]. In immune cells, 

selenoproteins regulate or are regulated by cellular redox level, which is a crucial modulator of 

immune cell signalling, or carry out quality control of protein folding [Hoffmann, et al., 2007]. 

Immune cells do not differ much from other cell types in their selenoprotein expression pattern 

[Huang, et al., 2012]. In mouse spleen, Gpx1, Gpx4, SelW, SelK and Sep15 belong to the most 

prominent selenoprotein transcripts [Hoffmann, et al., 2007], whereas in murine macrophages, 

Gpx1, Gpx4, Sel15, Sepp; SelK, SelR and Txnrd1 are the most abundant transcripts [Carlson, 

et al., 2010]. Txnrd1 is particularly important to maintain the redox tone in immune cells and 

the most abundant selenoprotein in mouse macrophages [Carlson, et al., 2009]. SelK 

promotes the calcium flux that induces the activation of several types of immune cells [Verma, 
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et al., 2011]. Immune cells respond to increasing Se-intake with increasing activity of GPX1 

and GPX4, as shown in lymphocytes [Broome, et al., 2004].  

 

1.3.3. Selenium and selenoproteins in inflammation 
The importance of Se in the immune system is undeniable and Se-supplementation is 

incorporated into the clinical guidelines for sepsis treatment. Some, but not all, clinical trials 

have proven that supplemental Se improves the outcome of critically ill patients, but the best 

application form, most suitable selenocompound and the mechanisms of action are still under 

discussion. On the one hand, Angstwurm et al. showed a reduced mortality in Se-

supplemented patients with severe sepsis or septic shock (significantly reduced 28-day 

mortality (to 42%, as compared to 57% in the placebo group) [Angstwurm, et al., 2007]. On the 

other hand, Forceville et al. demonstrated that high dose of Se achieved no difference in 

duration of mechanical ventilation, stay in the intensive care unit or mortality between the 

placebo and the treated group [Forceville, et al., 2007]. The recently published Cochrain review 

has analysed 16 different Se-supplementation studies for critical ill adults and illustrated that 

differences in the study outcome may result from variations in the form of the applied 

selenocompound, way of application (parenteral or enteral) and the dosage applied. A 

comparison between these studies is therefore difficult. The authors criticised most studies 

lack the quality of evidence and exhibit substantial bias [Allingstrup and Afshari, 2015]. 

Nevertheless, we have learned from such studies that serum Se-concentration negatively 

correlate with the severity of sepsis/SIRS and mortality risk.  

The plasma Se-concentration decreases primarily due to a redistribution of Se from serum into 

body compartments via capillary leakage, which is one out of five signs of inflammation [Berger 

and Chiolero, 2007; Maehira, et al., 2002]. Hawker et al. were among the first reporting that 

the plasma Se-concentration drops in ICU patients compared to healthy controls [Hawker, et 

al., 1990]. Forceville et al. showed that septic shock patients exhibited a 40% decrease in Se-

level and 0.7 µmol/L plasma Se was associated with a fourfold increase in mortality [Forceville, 

et al., 1998]. Further studies investigated the Se-status and plasma selenoproteins in critical 

ill patients in relation to mortality. Manzanares et al. showed that a drop in GPX3 activity 

correlated inversely with severity of sepsis and mortality [Manzanares, et al., 2009]. Forceville 

et al. highlighted that patients with septic shock or multi-organ failure had 70% lower SEPP 

levels than patients without SIRS, and that the plasma SEPP concentration was lower in non-

survivors as compared to survivors, while GPX showed no difference [Forceville, et al., 2009]. 

The authors postulated that SEPP, rather than GPX, is a potential marker of septic shock and 
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related syndromes. However, these studies are limited to adults and appropriate studies for 

neonates reflecting a high risk-group are missing.  

First insights into the complex molecular mechanism between selenoproteins and infection 

were shown in experimental animal studies. In this context, Lipopolysaccharide (LPS)-injection 

has proven as a suitable and well-defined form of a sepsis model in animal experiments. LPS 

is derived from the outer membrane of gram-negative bacteria. An LPS-injection into the target 

organism results in sepsis-like symptoms and an acute phase response that is accompanied 

with an increasing release of pro-inflammatory cytokines including IL-6, interleukin-1β (IL-1β) 

and tumour necrosis factor α (TNFα) (Figure 5) [Benatti and Pedersen, 2015; Buras, et al., 

2005].  

 

Figure 5: Se-metabolism and cytokine response in LPS-injected mice. 

(A) In macrophages, the transcription of IL-6, TNFα and IL-1β is regulated by the Toll-like receptor signalling 

cascade and results in the activation of NF-κB after LPS exposure. A rapid increase in circulating TNFα occurs 

immediately after exposure to the endotoxin. The increase in TNFα is followed by a rise in IL-6 concentrations. 

Increasing cytokine levels lead to a negative feedback on the NF-κB activation. Modified and simplified from [Benatti 

and Pedersen, 2015] using Servier Medical Art. (B) LPS-injection results in a strong reduction of serum Se and 

Sepp concentration to 50% and 39%, respectively, whereas no significant drop in the Sepp transcript level was 

observed. Decrease in Se and Sepp in serum were proven to result from a decline of factors of the selenoprotein 

biosynthesis machinery [Renko, et al., 2009]. 

Taking advantage of this sepsis-model, preliminary data from our group have shown a strong 

down-regulation of the hepatic selenoprotein biosynthesis machinery and impaired Se-

metabolism during the acute phase response in mice [Renko, et al., 2009]. Serum 

concentration of Se and Sepp declined in parallel after an LPS-injection, to 50% and 39%, 

respectively. While the mRNA of Sepp was not impaired by LPS-injection, a set of hepatic 
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transcripts involved in selenoprotein biosynthesis, e.g. EFsec, Sps2, SecS and most strongly 

PSTK declined coordinately during an acute phase response and contribute to the strong 

decline of Sepp [Renko, et al., 2009]. Carslon et al. further demonstrated that murine LPS-

activated macrophages increase Txnrd1 expression at transcript and protein level [Carlson, et 

al., 2009]. Constitutive studies revealed a post-transcriptional, sex-specific up-regulation of the 

ER-stress regulator SelS during the acute phase response in mice and highlight the complexity 

of selenoprotein regulation in the acute phase response [Stoedter, et al., 2010].  

 

1.3.4. Selenoproteins and pro-inflammatory cytokines 
Sepsis is characterised by an imbalance of pro- and anti-inflammatory cytokines with an 

increased shift towards the pro-inflammatory cytokines. The major pro-inflammatory cytokines 

that regulate an early immune response comprise IL-6, IL-1β and TNFα [Chaudhry, et al., 

2013]. They act as endogenous pyrogens by up-regulating the synthesis of secondary 

mediators of inflammation, by the up-regulation of other pro-inflammatory cytokines by 

macrophages or mesenchymal cells and by stimulating the production of acute phase proteins 

by the liver, e.g. ceruloplasmin or C-reactive protein [Chaudhry, et al., 2013]. The liver does 

not only produce a large number of acute phase proteins, but also expresses numerous 

selenoproteins including the Se-transporter SEPP and thereby contributes to controlling 

systemic Se-metabolism (Figure 6). IL-6 is secreted by T-cells and macrophages to stimulate 

the immune response to trauma or in response to specific microbial molecules. Plasma IL-6 

levels are elevated in patients with sepsis [Gouel-Cheron, et al., 2012], and even higher levels 

are observed in patients with septic shock or who have died from severe sepsis [Wu, et al., 

2009]. High IL-6 concentrations are associated with highest risk of death in patients with sepsis 

[Kellum, et al., 2007] and correlate to mortality rate in patients suffering from sepsis [Kumar, 

et al., 2009]. IL-1β is another mediator of the inflammatory response. It is involved in cell 

proliferation, differentiation and apoptosis. Patients that died from sepsis consistently showed 

higher serum IL-1β concentrations [Mera, et al., 2011]. TNFα induces apoptotic cell death and 

inhibits viral replication [Wallach, 1997]. In parallel to IL-6 and IL-1β, the TNFα serum 

concentration is significantly increased in patients with sepsis and in animal models [Mera, et 

al., 2011]. Independent from an impaired selenoprotein biosynthesis machinery during the 

acute phase response, a negative impact of IL-6, IL-1β and TNFα on selenoprotein expression 

has been reported in several publications. 
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Figure 6: Hepatic acute phase proteins and selenoproteins. 

The pro-inflammatory cytokines promote the hepatic production of many acute phase proteins, e.g. Fibrinogen, 

Serum amyloid A, C-reactive protein, Complement C3, Haptoglobin and Ceruloplasmin. These cytokines also 

regulate the expression of hepatic selenoproteins and the Se-transporter SEPP thereby affecting overall Se-

metabolism. Figure produced using Servier Medical Art. 

Promoter studies of SEPP indicate an interaction with cytokine and growth factors, repressing 

the SEPP promoter activity and thereby SEPP expression [Al-Taie, et al., 2002; Dreher, et al., 

1997; Mostert, et al., 2001]. Speckmann et al. highlighted that the individual cytokines IL-1β, 

interferon-γ and TNFα reduce protein and transcript levels of SEPP to a minor extent, whereas 

a combination of these cytokines cause an over 50% SEPP reduction in protein and transcript 

levels, associated with a reduced SEPP promoter activity in the colorectal adenocarcinoma 

cells Caco-2 [Speckmann, et al., 2010]. The authors further concluded that the down-regulation 

of the intestinal SEPP expression occurs via the induction of nitric oxide synthase 2 and that 

this effect may contribute to the emergence of inflammatory bowel disease-related colorectal 

cancer [Speckmann, et al., 2010]. In this context, GPX2 is highly expressed during 

inflammatory bowel disease and colorectal cancer. Subsequent animal studies in mice 

identified Gpx2 as a novel target of signal transducer and activator of transcription (STAT) 

transcription factors including STAT3. STAT3 is underlying the IL-6 signalling pathway [Hiller, 

et al., 2015]. Polymorphism studies in 522 individuals from 92 families identified associations 

between SELS polymorphisms and IL-6, IL-1β and TNFα concentrations. Interestingly, the 

suppression of SELS by short interfering RNA in macrophage cells increased the release of 

IL-6 and TNF-alpha, indicating that selenoproteins are not only regulated by cytokines, but also 
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vice versa [Curran, et al., 2005]. IL-1β and TNFα have also demonstrated to upregulate SelS 

via the NF-κB pathway, which might serve as evidence for a regulatory loop [Gao, et al., 2006]. 

However, there are still many regulatory relationships between cytokines and selenoprotein 

biosynthesis that require further decryption.  

 

1.3.5. Selenoproteins and aminoglycoside antibiotics  
An early application of a broadband antibiotic is the strongest weapon to combat sepsis. There 

are several different classes of suitable antibiotics of which some, e.g. the aminoglycosides 

(AG) are used less frequently due to their broad negative side effects. However, the rise of 

resistance to multiple antibiotics revived the application of this class of antibiotics. AG belong 

to the protein synthesis inhibitors whose clinical application is limited to serious cases, e.g. 

systemic infections like severe sepsis of neonates or for local severe infections [Tsunemoto, 

1987]. Endogenous mechanisms for AG degradation are missing in humans and the 

substances are thus excreted via the kidney [Gonzalez and Spencer, 1998]. AG may 

nevertheless accumulate in the kidney cortex and structures of the inner ear leading to nephro- 

and ototoxicity in treated individuals [Kent, et al., 2014]. The application period is hence 

strongly limited and AG serum concentrations are tightly controlled. Most antibiotics cover a 

wide application rage, whereas the use of AG is mainly restricted to gram-negative, aerobic 

bacteria. As AG cannot be absorbed by the intestine, they have to be applied intravenously 

[Gonzalez and Spencer, 1998]. 

AG interfere with the small 30S ribosomal subunit of bacteria, but also with the small 40S 

subunit of eukaryotes. This interference impairs the proofreading process and leads to the 

misinterpretation of codon [Poulikakos and Falagas, 2013; Ryu and Rando, 2001]. The 

misinterpretation leads either to the insertion of alternative amino acids or to a premature 

termination resulting in biosynthesis of truncated and/or non-functional proteins. AG may also 

induce the misinterpretation of the stop codons UAG (amber), UGG (ochre) and UGA (opal), 

promoting extended translation or suppressing premature stop codons [Keeling, et al., 2012]. 

Out of these three stop codons, the UGA codon is the most sensitive one [Kimura, et al., 2005]. 

Notably, the UGA codon is also coding for the insertion of Sec-residues into the growing 

peptide chain of selenoproteins (Figure 7 A). A misinterpretation of UGA codon may lead to 

the insertion of alternative amino acids and thus Sec-free, non-functional selenoproteins 

(Figure 7 B).  
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Figure 7: Interference of AG with selenoprotein biosynthesis. 

(A) Functional selenoprotein biosynthesis requires the recoding of the stop codon UGA mandatory for the 

incorporation of Sec-residues. (B) Interference of AG with the small 40S ribosomal subunit of eukaryotes may lead 

to the misinterpretation of the UGA codon leading 1) to the insertion of alternative amino acids and thereby to Sec-

free selenoproteins 2) to the expression of prolonged proteins. Abbreviation: aa= amino acid. Figure was created 

using Servier Medical Art.  

So far, the effects of AG on selenoprotein expression have mainly focused on the application 

of geneticin (G418). G418 is structurally similar to the clinically used gentamicin. In a 

pioneering study, Handy et al. demonstrated that G418 increases the UGA readthrough in Se-

replete cells, even in Se-absence, resulting in an increased immunodetectable, but 

enzymatically inactive variant of GPX1 with a substitution of L-arginine for Sec [Handy, et al., 

2006]. Studies of Tobe et al. have provided first comparative data on AG affecting 

selenoproteins differently due to varying degrees of error induction at UGA codons. The 

authors demonstrated a dose-dependent decrease in the enzymatic activity and Sec-insertion 

rate for TXNRD1, GPX1 and GPX4. The total Sec-amount in these selenoproteins varied 

strongly from as low as 30% in TXNRD1 to as >60% in GPX1 and GPX4. In line with the 

findings of Handy et al., AG induced a substitution of preferably L-arginine for Sec in GPX1 

and of L-arginine, cysteine and tryptophan for Sec in GPX4 [Tobe, et al., 2013]. An even more 
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complex interplay of selenoproteins and AG has been revealed by detailed cloning studies of 

the UGA codon context of the rat Sepp gene by Grupta et al. (2007). The authors showed 

significant differences spanning an 8-fold range of UGA readthrough efficiency resulting from 

different codon contexts. It is interesting to note that increasing concentrations of SBP2 

strongly reduced UGA misinterpretation. Mutations of either of both SECIS-elements (SECIS1, 

SECIS2) of the Sepp transcript resulted in different effects of UGA readthrough. This gives a 

first evidence that UGA readthrough depends also on the particular SECIS-element [Gupta 

and Copeland, 2007]. Although the current literature regarding AG and selenoproteins is 

limited, it has uncovered a complex interplay involving the UGA context, the SECIS-element 

and the availability of SBP2. 

 

1.3.6. Selenium and SEPP status in critical ill neonates  
As neonates are lacking a distinctive immune system, they are much more sensitive to 

environmental factors such as infections, and thus belong to the high-risk group for sepsis. An 

early clinical intervention in the form of antibiotic application and stabilizing their Se-status is 

of particular importance in order to improve the outcome of infection and their survival rate. 

The Se-status in newborns strongly relies on the Se-intake of the mother either via umbilical 

cord transfer or breast milk feeding. However, the plasma Se-concentrations in newborns are 

lower compared to the Se-concentrations of their mothers, and even lower in preterm infants 

when compared to mature infants [Amin, et al., 1980; Darlow and Austin, 2003]. In very early 

preterm, a low Se-level is linked with an increased risk of chronic neonatal lung disease 

[Darlow and Austin, 2003; Lockitch, et al., 1989]. Although the Se- and SEPP plasma 

concentrations are noted to decrease in sepsis and negatively correlate with the severity of the 

disease in adults [Forceville, et al., 2009; Hollenbach, et al., 2008; Manzanares, et al., 2009], 

respective knowledge in newborns is currently unknown. Darlow et al. reported that lower 

plasma Se in infants is associated with increased respiratory morbidity [Darlow, et al., 2000]. 

We have recently investigated the Se, SEPP and IL-6 concentrations in the plasma of neonates 

with proven infection in order to identify a biomarker for overall Se-status in healthy and 

infected newborns [Wiehe, et al., 2016] 1 . It was found that the plasma Se- and SEPP-

concentrations negatively correlate with increasing IL-6 plasma concentrations (> 500 ng/mL 

IL-6) (Figure 8).  

                                                
1 To note, increasing plasma concentrations of IL-6 have the highest correlation to mortality rate in severe sepsis patients 
(Chaudhry et al., 2013). 
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Figure 8: IL-6 and SEPP plasma concentrations in neonates with connatal infection. 

Plasma concentrations of Se (A) and SEPP (B) negatively correlate in infected neonates with IL-6 serum 

concentrations > 500 ng/L. Adapted from [Wiehe, et al., 2016].  

These findings are in line with a similar study of neonates with proven and clinical sepsis, 

where the plasma SEPP concentrations dropped from an average of 2.5 mg/L to under 1mg/L, 

and the IL-6 plasma concentrations increased from 60.1±7.8 pg/mL in healthy neonates to 

90.8±2.9 pg/mL in infected newborns [Asci, et al., 2015]. Moreover, it was shown that the Se-

concentrations in erythrocytes decreased in newborns with sepsis, however, to a lesser extent 

when compared to the drop in plasma SEPP-concentrations [Asci, et al., 2015]. These findings 

suggest that the correlation of decreasing Se-status with an increased severity of critical illness 

already exists in newborns. 

 

In line with the in vitro studies, addressing the interplay of selenoproteins and aminoglycosides 

[Gupta and Copeland, 2007; Handy, et al., 2006; Tobe, et al., 2013], Wiehe at al. (2016) 

investigated whether an antibiotic therapy with the aminoglycoside gentamicin might alter the 

serum concentrations of Se and SEPP directly (Figure 9). Significant differences in the plasma 

SEPP concentrations before and after antibiotic treatment were found in the infected neonates. 

While the plasma SEPP concentrations increased significantly after treatment, the total plasma 

Se-concentration remained unaffected (Figure 9 A+B). The plasma Se-concentrations 

negatively correlated with increasing gentamicin concentrations, while no significant 

correlation was observed between gentamicin and SEPP (Figure 9 C+D) [Wiehe, et al., 2016]. 

The nature of these observations however, remained elusive.  
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Figure 9: Se and SEPP serum concentrations in neonates with connatal infection. 

Changes in the Se and SEPP plasma concentrations were measured before and after combined antibiotic treatment 

(ampicillin and gentamicin). (A) The Se-concentrations were decreased in the infected individuals compared to the 

control group, but showed no difference before and after treatment. The SEPP concentrations showed no difference 

between the group before treatment, but the plasma SEPP concentration significantly increased in the infected 

group after treatment. (C) The Se-concentrations negatively correlated with blood gentamicin concentrations, (D) 

while the SEPP concentrations were positively related to gentamicin concentrations (Legend: § paired t-test no 

normal distribution $$ paired t-test normal distribution). Adapted from [Wiehe, et al., 2016]. 

Based on the results of this study [Wiehe, et al., 2016], the questions arose whether IL-6 

directly regulates SEPP and thereby affects other hepatic selenoproteins, and whether the 

observed increase in SEPP plasma concentrations resulted directly from gentamicin treatment.  
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1.4. Objective  
In critical inflammatory diseases like sepsis, the plasma Se and SEPP concentrations 

decrease over time and inversely correlate with outcome and mortality risk. Clinical studies 

have indicated that Se-supplementation may improve this negative outcome. Sepsis is 

amongst the three main causes of death, as reported by Deutsche Sepsis-Hilfe e.V. As sepsis 

can become rapidly life-threatening, an early diagnosis, and timely clinical intervention is 

required. This includes the early application of broadband antibiotics, e.g. aminoglycoside 

antibiotics, in order to combat the infection efficiently. In vitro experiments have revealed that 

aminoglycosides interfere with the Se and selenoprotein metabolism. In serious cases, such 

as severe sepsis of neonates, the application of aminoglycosides, in particularly gentamicin, 

has been well established in the clinics. In a recently published study of newborns with connatal 

infection, we have shown that high IL-6 plasma concentrations, a clinical marker for sepsis that 

correlates with the mortality risk of sepsis patients, negatively correlates with decreasing Se 

and SEPP plasma concentrations. However, the SEPP plasma concentration increased in 

infected individuals after treatment with the aminoglycoside gentamicin. As SEPP is an 

important Se-supplier for many Se-dependent tissues, e.g. brain, testes and kidney, its down-

regulation may lead to a reduced Se-supply in these organs, followed by a reduced expression 

of stress-related selenoproteins. Consequently, this may result in increasing ROS levels and 

increasing tissue damage in these organs and potentially organ failure 

To this end, this thesis aimed to identify and characterise the regulation of SEPP and other 

hepatic selenoproteins by,  

1. the pro-inflammatory cytokine IL-6 alone and in combination with IL-1β and TNFα  

2. aminoglycoside antibiotics  

3. IL-6 combined with aminoglycoside application  

In Se-supplemented and Se-depleted liver cells, in order to convey potential therapeutic 

strategies to minimise negative effects and to contribute to an improved clinical outcome.  

From this point, the following hypothesis was tested: 

The hepatic selenoprotein expression is modulated by a complex interference of the 
pro-inflammatory cytokines IL-6, IL-1β and TNFα, aminoglycoside antibiotics and the 
actual Se-supply. 
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2. Material and Methods 

2.1. Consumables  
If not described differently all consumables were ordered from BD Biosciences (Heidelberg, 

Germany), Eppendorf AG (Hamburg, Germany) and Sarstedt AG & Co (Nümbrecht, 

Germany).  

2.2. Chemicals  
All chemicals were ordered from Roth (Karlsruhe, Germany), Sigma-Aldrich (Hamburg, 

Germany) and Merck (Darmstadt, Germany). 

2.3. Solutions 
All solutions are based on ddH2O. 

Table 3: Standard solutions 

Name Concentration Component 
20x PBS (pH 7.5) 
 2.75 M NaCL  
 54.05 M KCL 
 157.30 M Na2HPO4●2H2O 
 29.39 M KH2PO4 
6x Loading buffer for TAE (pH 7.5) 
 200 mM TRIS-HCL 
 50% v/v Glycine 
 4% w/w SDS 
 0.04% v/v Bromophenol blue 
 125 mM DTT 
Homogenisation buffer (pH 7.4) 
 250 mM Sucrose 
 20 mM Hepes 
 1 mM EDTA (pH 8.0) 
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Table 4: Western blot solutions 

Name Concentration Component 
20% Gel solution 
 64.92% v/v Gel solution A (30% acrylic 

amide) 
 26% v/v Gel solution B (2% Bisacrylic 

amide) 
 9.08% v/v ddH2O 

Separation gel buffer (pH 8.8) 
 1.5 mM  Tris base (MW 121.14 g/mol) 
 0.4% w/w SDS 
Stacking gel buffer (pH 6.8) 
 0.5M TRIS●HCL (pH 8.0) 
 20% v/v SDS 
10x Running buffer for SDS-Page (pH 8.4) 
 192 mM Glycerine 
 25 mM TRIS●HCL (pH 8.0) 
 0.1% w/w SDS 
4x Loading buffer for SDS-Page (pH 7.5) 
 200 mM TRIS●HCL (pH 8.0) 
 50% v/v Glycerine 
 4% w/w SDS 
 0.04% v/v Bromophenol blue 
 125 mM DTT 
10x Transfer buffer 
 25 M Tris base (MW 121.14 g/mol) 
 192 M Glycerine 
 10% v/v Methanol 
10x TBS-Tween (pH 7.2-7.4) 
 0.2 M Tris base (MW 121.14 g/mol) 
 1.5 M NaCL (MW 58.44 g/mol) 
 0.05% v/v Tween 
Blocking solution 
 1% w/w TBS-Tween 
 5% w/w Skim milk powder 
20x Ponceau S stock solution 
 0.1% v/v Ponceau S 
 5% v/v Acetic acid 

 

  



Material and Methods 

 

 44 

Table 5: Buffers for enzyme activity assays 

Name Concentration Component 
GPX activity assay 
Basic buffer 

 100 mM  TRIS●HCL (pH 7.6) 
 5 mM EDTA (pH 8.0) 
 1 mM NaN3 

 
TXNRD activity assay 
1M Potassium phosphate buffer (pH 7.0) 

 61.5 % v/v 1 M K2HPO4 (MW 174.2) 
 38.5% v/v 1 M KH2PO4 (MW 136.1) 

 
DIO1 activity assay 
1 M Potassium phosphate buffer (pH 6.8) 

 49.7% v/v 1 M K2HPO4 (MW 174.2) 
 50.3% v/v 1 M KH2PO4 (MW 136.1) 
 10 mM EDTA (pH 8.0) 

Iodine-determination buffer 1  
 25% v/v 0.1 M Ammonium cerium (IV) 

sulphate solution  
 65% v/v UltraPure H2O (Biochrom) 
 1% v/v 5 M H2SO4  
Iodine-determination buffer 2 
 50% v/v 0.05 M Sodium arsenide solution  
 40% v/v UltraPure H2O (Biochrom) 
 10% v/v 5 M H2SO4  
 200 mM NaCL 
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2.4. Commercially available systems 
 

Table 6: List of ready-to-use kits  

Ready-to-use kit Provider 
AbsoluteTM QPCR SYBR® Green Fluorescein Mix Thermo Fisher Scientific, Winsford, UK 

Amersham™ ECL™ Western Blot Detection Reagent GE Healthcare UK Limited, Little 
Chalfont, UK 

BCA™ Protein Assay Kit Pierce, Rockford, USA  
Dual-Luciferase®-Reporter Assay System Promega, Mannheim, Germany 

FastPasmid® Mini Eppendorf, Hamburg, Germany 

iScript™ cDNA Synthesis Kit Bio-Rad Laboratories GmbH, Munich, 
Germany 

KAPA HiFi HotStart ReadyMix PCR Kit KAPA Biosystems, Boston, USA 

Perfectprep® Gel Cleanup Eppendorf, Hamburg, Germany 

Pure Yield™ Plasmid Midiprep System  Promega, Mannheim, Germany 

Selenotest ELISA ICI immunochemical intelligence 
GmbH, Berlin, Germany 

T4 DNA Ligase  New England Biolabs Inc., Frankfurt 
a.M., Germany 

Renilla-Juice detection system  p.j.k GmbH, Kleinbittersdorf, Germany 

Beetle-Juice detection system p.j.k GmbH, Kleinbittersdorf, Germany 

 

2.5. Enzymes, Cytokines, Aminoglycosides and Antibodies 
 

Restriction enzymes 

All restriction enzymes, BSA and the according buffers were ordered from New England 

Biolabs Inc. (Frankfurt a.M., Germany). For double digestion with different restriction enzymes, 

buffers were used according to Double Digest Finder software (New England Biolabs GmbH). 

The following restriction enzymes (20,000 units/mL) were used: EcoRI, EcoRV, HindIII, KpnI, 

NheI, SacI, and XhoI (New England Biolabs GmbH).  
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Cytokines 

Table 7: List of pro-inflammatory cytokines 

Cytokine Source Provider 

IL-6, human recombinant E.coli Biomol GmbH, Hamburg, Germany 

IL-1β, human recombinant E.coli Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

TNFα, human recombinant E.coli Preprotech, Rocky Hill, United States 

 

Aminoglycosides 

Table 8: List of used antibiotics 

Antibiotic Company 

G418 disulfate/geneticin AppliChem GmbH, Darmstadt, Germany 

Gentamicin solution Sigma Aldrich, Hamburg, Germany 
 

Amikacin Fisher Scientific, Reinbach, Switzerland 

Tobramycin SERVA Electrophoresis GmbH, Heidelberg, 
Germany 

Neomycin Sigma Aldrich, Hamburg, Germany 

Streptomycin Fisher Scientific, Reinbach, Switzerland 

 

Antibodies 

For protein detection by Western blot or Dot blot analysis the following primary and secondary 
antibodies were used (Table 9). 

Table 9: List of all antibodies used for Western blot and Dot blot  

Name Species Purchase 
number 

Dilution factor Provider 

Primary antibody 
anti-β-actin-
Peroxidase  

mouse A3854 1:25,000 Sigma Aldrich, 
Hamburg, Germany 

anti-Ceruloplasmin  goat ab19171 1:2,000 Abcam®, Cambridge, 
UK 

anti-DIO1 1068 
(human, C-term) 

rabbit - 1:2,000 Mr. Kuiper via AG 
Schweizer, Institute for 
Experimental 
Endocrinology, Charité, 
Berlin 

anti-SEPP (2B5-
G5x2) 

monoclonal,  
mouse 

- 1:2,000 Invivo BioTech 
Services GmbH, 
Henningsdorf, 
Germany 

anti-GPX1 rabbit ab16798 1:1,000 Sigma Aldrich, 
Hamburg, Germany 
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anti-GPX2 rabbit - 1:5,000 Prof. Kipp [Hiller, et al., 
2015] 

anti-GPX4 rabbit ab40993 1:1,000 Sigma Aldrich, 
Hamburg, Germany 

Secondary antibody 
  
anti-goat-IgG/HRP rabbit P0449 1:2,000 Dako Denmark A/S, 

Glostrup, Denmark 
anti-rabbit-IgG/HRP  goat P0448 1:2,000 Dako Denmark A/S, 

Glostrup, Denmark 
anti-mouse-
IgG/HRP 

sheep NXA931 1:2,500 GE Healthcare UK 
Limited, Little Chalfont, 
UK 

 

2.6. Primer 
All listed primers were supplied by Invitrogen (Regensburg, Germany). The primers were 

diluted in UltraPure water (Biochrom) to a final concentration of 10 µM. 

Table 10: Primers used for amplification of the promoter regions2  

Gene Forward (5’  3’) Reverse (5’  3’) 
SEPP atgctcgagAGATATGGGACCCCAAAAGG atggatatcAGTCCTGTTGTTTACCTCACC 

GPX1 atgggtaccAGAGGAGCCACCAGTTCTCA atggctagcCCCCGAACAAGCACTGTAAG 

GPX2 atgggtaccTTAGCAGATGTCCTGCGATG atggctagcCCCCACCTGTAAGTGCTGTT 

GPX4 atgggtaccAAGAAAACCCTCCAGACTTGTG atggctagcAGAGCGCTCATTGGTCAGA 

DIO1 atgggtaccCCGCCTCTGGACTTCATTTA atggctagcCTCGGCAAAGCCAGAGTAAG 

 

Table 11: Primers used for qRT-PCR 

Gene Forward (5’  3’) Reverse (5’  3’) 
HPRT TGACACTGGGAAAACAATGCA GGTCCTTTTCACCAGCAAGCT 

18S TTGACGGAAGGGCACCACCAG GCACCACCACCCACGGAATCG 

CP CAAAGGAGATTCGGTCGTGT TGAGGGAAGAGGTTTGCTGT 

DDIT3 TGGGGAATGACCACTCTGTT CTCCTGGAAATGAAGAGGAAGAA 

SEPP TATGATAGATGTGGCCGTCTTG TGTGATGATGCTCATGATGGTA 

DIO1 TTAGTTCCATAGCAGATTTTCTTGTCA CTGATGTCCATGTTGTTCTTAAAAGC 

GPX1 GGGCAAGGTACTACTTATCGAG TTCAGAATCTCTTCGTTCTTGG 

GPX2 AATGTGGCTTCGCTCTGA GAAGGTGGGCTGGTATCC 

GPX4 GCTGTGGAAGTGGATGAAGA CTAGAAATAGTGGGGCAGGTC 

                                                
2 Small letters indicate the restriction sites and capital letters the gene sequence. 
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Table 12: Primers used for sequencing 

Name Vector system Primer sequence (5’  3’) 
RV3 pGL4.10[Luc2]   CTAGCAAAATAGGCTGTCCC 

RV5 pGL4.10[Luc2] CCGTCTTCGAGTGGGTAGAA 

 

2.7. Cell lines and consumables  
 

Table 13: List of primary cells and cell lines 

Name Origin Reference Full growth media 

HepG2 Human hepatoma  ATCC® HB-

8065 

DMEM:F12 containing 10% FBS, 1% 

Pen/Strep 

Hep3B Human hepatoma  ATCC® HB-

8064 

DMEM:F12 containing 10% FBS, 1% 

Pen/Strep 

Hepa1-6 Murine hepatoma  ATCC® CRL-

1830 

DMEM:F12 containing 10% FBS, 1% 

Pen/Strep 

HEK293 Human embryonic 

kidney  

ATCC® CRL-

1573 

DMEM:F12 containing 10% FBS, 1% 

Pen/Strep 

Primary, murine 

Hepatocytes 

liver from mouse 

strain C57BL/6  

[Lietzow, et al., 

2016] 

DMEM High Glucose containing 10% 

FBS, 1% Pen/Strep, 1% Glutamine, 

100 nM Na2SeO3 

 

Table 14: List of cell culture solutions 

Cell culture reagent Provider 
DMEM:F12, HEPES GIBCO® -Life Technologies GmbH, Darmstadt, 

Germany 

DMEM High Glucose Biochrom AG, Berlin, Germany 

Fetal Bovine Serum (FBS) GIBCO® -Life Technologies GmbH, Darmstadt, 
Germany 

FuGENE HD transfection reagent Promega, Mannheim, Germany 

Opti-MEM I Reduced Serum Medium GIBCO® -Life Technologies GmbH, Darmstadt, 
Germany 

Penicillin-Streptomycin (10,000 U/mL) GIBCO® -Life Technologies GmbH, Darmstadt, 
Germany 

TrypLE™ Express GIBCO® -Life Technologies GmbH, Darmstadt, 
Germany 

Dulbecco’s Phosphate Buffered Saline; 
DPBS (1x) 

GIBCO® -Life Technologies GmbH, Darmstadt, 
Germany 
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2.8. Vector systems 
 

Table 15: List of vector systems  

Name Company 
pGL4.74[hRluc-tk] Promega, Mannheim, Germany 

pSEAP2-Control Promega, Mannheim, Germany 

pGL4.10[Luc2] Promega, Mannheim, Germany 

pGL3-Basic Promega, Mannheim, Germany 

pGL4.26[Luc2/minP/Hygro] Promega, Mannheim, Germany 

pCDH cDNA cloning vector System Biosciences, Palo Alto, USA 
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2.9. Laboratory equipment 
 

Table 16: List of laboratory equipment 

Equipment Company 
ARPEGE 140, liquid nitrogen tank Air Liquide- DMC, Paris, France 
Autoclave Varioklav H+P Labortechnik, Oberschleißheim, Germany 
Cell culture microscope Wilovert 30 Standard Helmut Hund GmbH, Wetzlar, Germany 
Centrifuge 5415D Eppendorf, Hamburg, Germany 
Centrifuge Megafuge 1.0R Heareus Sepatec GmbH, Hanau, Germany 
Clean bench Model 1.2 (HeraSafe) Heareus Sepatec GmbH, Hanau, Germany 
CO2-incubator (HeraCell) Heareus Sepatec GmbH, Hanau, Germany 
CO2-incubator (CB line)  Binder, Tuttlingen, Germany 
Electrophoresis chamber (horizontal) Blue 
Marine 200 

Roth, Karlsruhe, Germany 

Gel documentation system AlphaImager®EC 
Hemocytometer Neubauer-improved (0.01mm) 

Alpha Innotec, San Leandro, Germany 
Paul Marienfeld GmbH & Co. KG, Lauda-
Königshofen, Germany 

Heating block Thermomixer comfort Eppendorf, Hamburg, Germany 
iCyclerTM Thermal Cycler Bio-Rad Laboratories, Munich, Germany 
Laboratory water bath 1083 GFL GmbH, Burgwedel, Germany 
Magnetic stirrer R3T MLW, Würzburg, Germany 
Microwave oven Micro Whirlpool, Schorndorf, Germany 
PCR-Cycler MWG Biotech, Ebersberg, Germany 
pH-Meter inoLab Benchtop WTW, Weilheim, Germany 
Pipette 0,5-10uL, 10-100uL, 100-1000uL Eppendorf, Hamburg, Germany 
Pipette filler accu-jet® pro Brand, Wertheim, Germany 
Plate photometer Mithras LB 940 Berthold Laboratories, Bad Wildbad , Germany 
Plate photometer Model 3550 Microplate Reader Bio-Rad Laboratories, Munich, Germany 
Plate shaker Titramax 1000 Heidolph Instruments GmbH & Co.KG, 

Schwabach, Germany 
Refrigerated centrifuge 5417R Eppendorf, Hamburg, Germany 
Roller incubator TRM-V  IDL, Nidderau, Germany 
scale СP 2201, CP 323S Sartorius, Göttingen, Germany 
Spectrophotometer NanoDrop 1000 PEQLAB Biotechnologie GMBH, Erlangen, 

Germany 
TRANS-BLOT® SD Semi-Dry Transfer Cell Bio-Rad Laboratories, Munich, Germany 
Total-reflection X-ray fluorescence Picofox S2 Bruker Nano GmbH, Berlin, Germany 
Ultrapure water unit EASYpure UVTM Barnstead Int., Dubuque, USA 
Ultrasound device Labsonic® M B. Braun Biotech, Melsungen, Germany 
Vortex REAX 2000 Heidolph Instruments GmbH & Co.KG, 

Schwabach, Germany 
X-ray film cassette Kodak, Rochester, USA 
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2.10. Software and databases 
 

Table 17: List of software and databases 

Software/database Publisher 
BIOGPS http://biogps.org/#goto=welcome 
Bio-Rad iCycler iQ 3.0 Bio-Rad Laboratories, Hercules, USA 
BLAST http://www.ncbi.nlm.nih.gov/BLAST/ 
BLAT Search http://genome.ucsc.edu/cgi-bin/hgBlat 
Double Digest Finder  http://66.155.211.155/nebecomm/DoubleDigestCalculator.asp 
EndNote X8 Thomson Reuters, New York, USA 
Genevestigator https://www.genevestigator.com/gv/ 
GraphPad Prism 4 GraphPad Software, La Jolla, USA 
MatInspector, Genomatrix http://www.genomatix.de/matinspector.html 
Microsoft Office 2013 Microsoft Deutschland, Unterschleißheim, Germany 
National Center for Biotechnology 
(NCBI) 

http://www.ncbi.nlm.nih.gov/ 

OMIM http://www.ncbi.nlm.nih.gov/omim 
Primer 3 Version 4.0 http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi 
UCSC http://genome.ucsc.edu/ 
UniProt http://www.uniprot.org/ 
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2.11. Cell culture 
 

2.11.1. Cell maintenance 
All cell were cultured in full growth medium in a humidified CO2-incubator at 37°C, 5% CO2 and 

20% O2. The full growth medium consists of medium (either DMEM: F12 or DMEM High 

Glucose) supplemented with 10% FBS and 1% Pen/Strep. For serum-starvation and 

experimental procedures, cells were cultured in starvation medium which consists of serum-

free medium (either DMEM:F12 or DMEM High Glucose) supplemented with 1% Pen/Strep.  

For strain maintenance, cells were cultured as recommended by the supplier. The cell lines 

were passaged twice per week in a ratio of 1:4 to 1:6 in a T75 (75 cm2) cell culture flask. 

Thereto, complete growth medium was removed and cells were briefly washed with 1x DPBS. 

1 mL TrypLE™ Express solution was added to the cells and incubated for five minutes in the 

CO2-incubator. Separation of the cells was observed under an inverted microscope. The 

reaction was stopped by adding 9 mL full growth medium to the cell suspension. The cells 

were aspirated by gently pipetting. The diluted cell suspension was then transferred in a sub-

cultivation ratio of 1:4 to 1:6 to a new cell culture flask and cultured as mentioned above.  

 

2.11.2. Cell counting 
The cells were seeded in a defined cell density depending on the experimental set-up. To this 

end, cells were washed, trypsinised, and aspirated as described before. For cell counting, a 

subset of cell suspension was mixed in a ratio 1:2 to 1:10 with Trypan Blue solution (Sigma-

Aldrich, Hamburg, Germany) in order to visualise vital cells. 10 µL of this mixture were 

transferred to a hemocytometer and living cells were counted under a light microscope. The 

average of counted cells was then multiplied by the dilution factor and 104 in order to estimate 

the number of cells per mL.  

 

2.11.3. Freezing and thawing of cells 
All cell stocks were stored in 1 mL freezing medium (40% medium, 50 % FBS and 10% DMSO 

(Sigma-Aldrich, Hamburg Germany)) in liquid nitrogen. In order to thaw cells, cell stocks were 

taken from liquid nitrogen storage and quickly thawed at 37°C. The cell suspension was then 

diluted in 15 mL full growth medium and centrifuged at 800 rpm and RT for five minutes. The 

medium was then removed; cells were re-suspended in 10 mL fresh full growth medium and 

seeded into a T75-cell culture dish.  
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In order to freeze cells, confluent grown cells were washed, trypsinised and aspirated as 

described previously. The cells were then pelleted at 800 rpm and RT for five minutes. After 

centrifugation, the medium was aspirated and cells were re-suspended in 4 mL freezing 

medium (50% cell culture medium without additives, 40% FCS and 10% DMSO). 1 mL cryo-

vials were prepared, stored overnight at -80°C and finally transferred to liquid nitrogen. 

 

2.11.4. Primary cells 
Isolated primary, murine hepatocytes were obtained from a collaboration with the working 

group of Dr. Renko and Prof. Köhrle (Institute for Experimental Endocrinology, Charité, Berlin, 

Germany) and isolated as described earlier [Rathmann, et al., 2015]. The hepatocytes were 

seeded in full growth medium at a density of 0.15x106 cells/3.5cm2 and incubated for three 

hours under standard conditions. After three hours, the medium was exchanged with fresh full 

growth medium and cells were further incubated overnight. Prior to each experiment, the 

medium was exchanged for DMEM 1g/L D-Glucose medium containing 1% Glutamine and 1% 

Pen/Strep for 24 hours.  

 

2.11.5. Cell viability assay 
In order to test the cells viability, an MTT-test assessing cell metabolic activity was performed. 

The yellow tetrazole MTT, short for 3-(4,5-Dimethylthiazol-2-Y)-2,5-Diphenyltetrazolium 

Bromide, is reduced to purple formazan in living cells. The formazan accumulates in the form 

of cell aggregates and correlates to the cell viability. Briefly, 20,000 cells/well were seeded in 

a 96-well plate. After 24 hours, the full growth medium was removed and cells were incubated 

for further 24 hours in starvation medium. Cells were then stimulated with different 

concentrations of pro-inflammatory cytokines, aminoglycosides and Se. After 48 hours, the 

medium was removed, cells were washed once in 1x PBS and 225 µL fresh starvation medium 

and 25 µL 12 mM MTT (MTT in ddH2O) was added per well. The cells were incubated for one 

to three hours in a CO2-incubator at 37°C. The reaction was stopped by removing the MTT-

containing medium. The cells were lysed for ten minutes using 100 µL lysis buffer (1:3.3x10-3 

37% HCL in isopropanol). Finally, the absorbance of the accumulated formazan was measured 

at 492 nm in a micro plate reader. The cell viability was calculated as difference in absorption 

(ΔE) of stimulated and unstimulated cells. 
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2.12. Cloning 
 

2.12.1. Cloning of promoter regions 
 

Primer design 

In order to investigate the regulation of selenoproteins by pro-inflammatory cytokines, 

aminoglycosides and Se, an approximately 1000 bp long promoter region (directly upstream 

of the transcription start of a set of selenoprotein genes) was amplified from human genomic 

DNA. Cloning primers were designed using Primer3. For further cloning procedures, restriction 

sites were added to the 5’ end of the primer sequence (Table 10). Genomic sequences were 

obtained from NCBI. 

 

Amplification of promoter regions 

A gradient-PCR was performed for each primer pair in order to determine the optimum 

annealing temperature. For the amplification of the promoter regions, the KAPA HiFi HotStart 

ReadyMix PCR Kit was used as followed: 

 34.5-x µL UltraPure water (Biochrom) 
 10 µL 5x KAPA HiFi Buffer 
 1.5 µL 10 mM KAPA dNTP Mix 
 1.5 µL 10 µM forward primer (Invitrogen) 
 1.5 µL 10 µM reverse primer (Invitrogen) 
 x µL 50 ng DNA template 
 1 µL 1 U/µL KAPA HiFi HotStart DNA Polymerase 

 50 µL final volume 
 

The gradient-PCR was then performed under the conditions given in Table 18.  

Table 18: Gradient-PCR cycle condition 

No. Temperature [°C] Duration [min] Step Remarks 

1 95 3:00 initial denaturation  

2 98 0:20 denaturation  
Repeat step 2 to 4 for 

35 cycles 3 60 ± 10 0:15 primer annealing 

4 72 0:30/kb elongation 

5 72 1 min/kb final elongation  
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The expected PCR product size was verified via agarose gel electrophoresis. The promoter 

region was finally amplified with optimised annealing temperature under similar conditions.  

 

Purification of PCR-product 

The amplified promoter fragment was purified using the Perfectprep® Gel Cleanup Kit 

(Eppendorf) and the according protocol. For the detailed protocol, please refer to the 

Perfectprep® Gel Cleanup manual. The DNA concentration of the purified PCR-product was 

measured using a UV/VIS-spectrophotometer.  

 

Restriction digestion  

In order to clone the amplified promoter fragments into the vector pGL4.10[Luc], 500 ng purified 

PCR-product and 1-5 µg of the target vector were digested with suitable restriction enzymes. 

Thereto, 1x NEBuffer, 1x BSA (New England Biolabs GmbH), 0.25 µL (20,000 U/mL) restriction 

enzyme (New England Biolabs GmbH) and x µL UltraPure water (Biochrom) (10 µL final 

volume) were added to the PCR-product or target vector, and incubated for three hours at 

37°C. The digested PCR-product was purified using the Perfectprep® Gel Cleanup Kit 

(Eppendorf). 

 

Vector dephosphorylation 

To avoid self-ligation of the vector, the prior digested vector was dephosphorylated using 

Shrimp Alkaline Phosphatase (Fischer Scientific, Schwerte, Germany). 1-5 µg vector and 1 µL 

SAP (1 U/µL) were diluted in 1x SAP reaction buffer to a final volume of 20 µL and incubated 

for 15 minutes at 37°C. The reaction was incubated for 30 minutes at 65°C in order to heat 

inactivate the SAP. The dephosphorylated vector was finally purified with Perfectprep® Gel 

Cleanup Kit (Eppendorf).  

 

Ligation 

The target vector and the PCR-fragment were mixed in a molar ratio of 1:3. 1 µL T4 DNA 

Ligase, 2x T4 Ligase Buffer (T4 DNA Ligase Kit, New England Biolabs GmbH) and x µL of 

UltraPure water (Biochrom) were added to a final volume of 20 µL. The ligation reaction was 

then performed at 16°C overnight. 
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Transformation of E.coli cells DH5α 

For cloning purposes, the non-pathogenic E.coli strain E.coli (DH5α) was used. Due to multiple 

mutations it allows a high-efficiency transformation (genotype: dlacZ Delta M15 Delta (lacZYA-

argF) U169 recA1 endA1 hsdR17 (rK-mK+) supE44 thi-1 gyrA96 relA1). Competent E.coli 

DH5α cells were pre-chilled on ice and ligated pGL4.10[promoter-Luc] vector was added to 

competent cells (ratio v/v 1:10). After 20 minutes on ice, cells were heat-shocked for 30-45 s 

at 42°C and immediately cooled down on ice. Cells were then incubated for one hour at 37°C 

in 500 µL ampicillin-free LB medium. Depending on the cell density, 10-200 µL of cell 

suspension was plated onto ampicillin-containing (100 µg/mL) LB agar plates and incubated 

over night at 37°C.  

 

Mini preparation 

Single grown colonies were picked from overnight grown, transformed E.coli DH5α cells. From 

these colonies, plasmid-DNA was isolated using the Fast Plasmid Mini Kit (Table 6). The 

concentration of plasmid DNA was measured using spectrophotometer.  

 

Test restriction digestion 

In order to verify whether the isolated plasmids contain the desired promoter fragment, a 

restriction digestion test was performed. The correct fragment size was confirmed via agarose 

gel electrophoresis.  

 

Sequencing 

Positive identified clones were sent for sequencing to LGC genomics (Berlin, Germany). To 

this end, 1 µg DNA were mixed with 4 µL of 5 µM sequencing primer (Table 12) to a final 

volume of 14 µL in UltraPure water (Biochrom). Sequences were then compared to reference 

sequences using ClustalW2 Multiple Sequence Alignment (EMBL-EBI). The reference 

sequences are based on NCBI database.  
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Plasmid purification 

In order to purify the plasmid DNA, positive E.coli DH5α clones were cultivated overnight in 

50 mL ampicillin-containing LB-medium. The cells were cultivated until an OD600 of 1.0-1.5 

was achieved and then sequentially centrifuged for ten minutes at RT and 5,000 x g. The 

plasmid DNA was isolated and purified using PureYieldTM Plasmid Maxiprep Kit ( 

Table 6) and according to the manual of the supplier.  

 

2.12.2. Cloning of Se-dependent reporter constructs 
For the design of all Se-dependent reporter constructs, a fusion protein of full-length Firefly 

luciferase (FLuc) and Renilla luciferase (RLuc) was cloned into the multiple cloning site of 

pCDH cDNA cloning vector (Table 15) as described in section 2.12.1. The fusion protein 

reading-frame was interrupted by an in-frame UGA codon, coding for both the Opal-stop codon 

and Sec-insertion. The 3’UTR contained the selenoprotein-specific SECIS-elements of GPX1, 

GPX4 or SEPP, or a SECIS-free sequence (negative reporter). Fragment sizes and primers of 

the specific SECIS-elements are given in Figure 10.  

 

Figure 10: Se-dependent reporter constructs. 

The Se-dependent reporters constructs were designed as fusion protein of full-length Firefly luciferase (FLuc) and 

Renilla luciferase (RLuc) interrupted by an in-frame (A) UGA codon (SECIS-free control), (B) UGC codon (100% 

readthrough control) or (C) UGA codon with additional selenoprotein-specific SECIS-elements of GPX1, GPX4 or 

SEPP in the 3’-untranslated region [SeProt]-SECIS. 
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A positive reporter was constructed by the replacement of the UGA triplet for a UGC triplet 

coding for cysteine allowing a stimulation independent readthrough (100% readthrough 

control). 

2.13. Reporter gene assays 
 

2.13.1. Reporter gene assays in transiently transfected cell lines 
For a transient transfection, 0.095 µg plasmid and 0.005 µg control plasmid (pSEAP2-Control) 

were dissolved in Opti-MEM cell culture media. 2.5x FuGENE transfection reagent was added 

and incubated for 15 minutes at RT. 2x104 cells per well were added to the reaction mixture, 

carefully mixed and seeded in a 96-well plate at a total volume of 100 µL. Next day, cells were 

starved for one hour in starvation media and stimulated for a further 17 hours with standard 

concentrations of IL-6, TNFα or IL-1β dissolved in starvation media.  

For normalisation reasons, 50 µL supernatant was transferred to a new 96-well cell culture 

plate and incubated for 15 minutes with 20 µL SEAP reagent (ratio v/v 1:10 CSPD® substrate 

with Sapphire-II™ Enhancer (Applied Biosystems, Foster City, USA) and SEAP buffer (1 M 

EDTA, 0.5 mM MgCL2)). The SEAP activity was measured as relative light units (RLU) using 

microplate luminometer. In parallel, the cells were washed once with 1x PBS and lysed for 20 

minutes at RT using lysis buffer (1:5 PassiveLysis Buffer diluted in ddH2O). The activity of 

Firefly luciferase (FLuc) was measured by adding 20 µL Luciferase substrate (Dual-

Luciferase® Reporter Assay System 10-Pack; Promega, Mannheim, Germany). The FLuc 

activity is also given as RLU. 

 

2.13.2. Reporter gene assays in stable transfected HEK293 cells 
For stable transfection of HEK293 cells, 0.5x105 cells/well were seeded into six-well cell culture 

dishes and incubated overnight at 37°C, 5% CO2 and 20% O2. The medium was changed after 

24 hours and transfected as follows. 2 µg plasmid and 6 µl of FuGENE transfection reagent 

were diluted in 100 µL Opti-MEM cell culture medium and incubated for 15 minutes at RT. The 

transfection mixture was then added to each well. The medium was exchanged with full growth 

medium after 24 hours. Subsequently, growth medium was again changed after 24 hours to 

medium containing 5 µg/mL puromycine (ThermoFisher) for positive selection. 

Stably transfected HEK293 cells were seeded in pre-coated (1:40 poly-L-lysine diluted in 1x 

PBS) 48-well cell culture dishes at 50,000 cells/well. After an incubation for 24 hours in 
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starvation medium, cells were stimulated with either AG or Se dissolved in starvation 

medium. The medium was removed after 48 hours and cells were lysed in 80 μL lysis buffer 

(1:5 PassiveLysis Buffer diluted in ddH2O) for ten minutes at RT. 20 µL cell lysate was 

transferred to a white 96-well cell culture plate and RLuc and FLuc activities were determined 

independently using Renilla-Juice detection system or Beetle-Juice detection system ( 

Table 6). RLuc and FLuc activities were determined as RLU using a microplate luminometer.  

 

2.14. Analysis of transcript level 
 

Isolation of mRNA 

0.5x106 cells were seeded to six-well cell culture dishes in full growth medium. The next day, 

cells were starved for 24 hours in starving media and stimulated for a further 48 hours with the 

IL-6, G418, geneticin or Na2SeO3, diluted in starvation medium. 

The cells were washed with 1x PBS and 1 mL peqGOLD TriFAST (PEQLAB Biotechnologie 

GmbH, Erlangen, Germany) was added to each well. After ten minutes of incubation at RT, 

the cell suspensions were transferred to tubes (Eppendorf) and lysed in a tissue lyser (5 min 

at 15 s-1). For phase separation, 200 µL Chloroform was added to each sample and cell lysate 

was centrifuged for ten minutes at RT and 14,000 rpm. The aqueous phase was transferred to 

500 µL ice-cold isopropanol and precipitated at -20°C overnight. The reaction mixture was 

again centrifuged for ten minutes at 4°C and 14,000 rpm in order to precipitate the RNA. The 

supernatant was removed and the cell pellet was washed twice with 75% DEPC-EtOH (EtOH 

absolute in DEPC-H2O). Finally, the supernatant was removed and the pellet was dried for ten 

minutes at RT. The dried cell pellet was then dissolved in 30 µL DEPC-H2O (0.1 mL DEPC/100 

mL H2O) and RNA concentration was measured using a spectrophotometer.  
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cDNA synthesis 

1 µg RNA was translated into cDNA using iScript cDNA Synthesis Kit (Bio-Rad). According to 

the manufacturer’s protocol, the following reaction mixture was used for one reaction:  

 

 

For cDNA synthesis, the cycler conditions given in Table 19 were used. 

Table 19: Cycle conditions for the cDNA synthesis 

Cycle Temperature [°C] Duration [min] Step 

1 25 5:00 annealing 

2 42 30:00 elongation 

3 85 5:00 reaction inactivation 

4 8 - storage 

 

 

Quantitative RT-PCR 

The mRNA expression level in HepG2 cell was determined using qRT-PCR. For one qRT-PCR 

reaction, the following reaction mixture was used: 

 5.0 µL Sybr Green Dye (Life Technologies) 
 4.5 µL Aqua Pure (Biochrom)  
 0.25 µL 10 µM Reverse Primer  
 0.25 µL 10 µM Forward Primer  
 5.0 µL cDNA template 
 15 µL final volume 

 

The reaction mixture was transferred to a 96-well plate and qRT-PCR was performed under 

the cycle conditions given in Table 20.  

  

 4.0 µL 5x iScript reaction mix 
 1.0 µL iScript reverse transcriptase  
 15-x µL nuclease-free water 
 x µL 0.5 µg RNA template 
 20 µL final volume 
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Table 20: Cycle conditions for the qRT-PCR  

No. Temperature [°C] Duration [min] Step 

1 95 15:00 initial denaturation 

2 95 0:15 denaturation 

3 58 0:30 annealing 

4 72 0:30 elongation 

melting curve 

5 50-90 0:15 denaturation 

 

For normalisation reasons, different housekeeping genes were tested for their stability to pro-

inflammatory cytokine, aminoglycoside and Se-stimulation. Subsequently, the housekeeping 

gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) was chosen for stimulation 

with IL-6 ± Se and 18S RNA for stimulations with aminoglycosides. The transcript regulation 

was then analysed via the 2(-∆∆t) method.  

2.15. Protein chemical methods 
 

2.15.1. Isolation of proteins 
For protein isolation, 0.5x106 HepG2 or Hepa1-6, and 0.25x106 Hep3B cells or primary 

hepatocytes were seeded into six-well cell culture dishes. After 24 hours, cells were starved 

for another 24 hours and then stimulated with pro-inflammatory cytokines, AG and Se, diluted 

in the according starvation medium. The conditioned medium was removed after 48 hours and 

stored at -20°C until further use. The cells were washed with 1x PBS, 250 µL homogenisation 

buffer (Table 3) was added and cells were collected using a cell scraper. In order to 

homogenise the cells, the cell suspension was treated with ultrasound (cycle 0.6; amplitude 

100%) eight times. The samples were stored at -20°C until further use.  

 

2.15.2. BCA-Assay 
The protein concentrations of the cell lysates were measured using Pierce BCA Protein 

Assay Kit ( 

Table 6). Following the manufacture’s protocol, 25 µL standard (BSA standard), and 25 µL 

sample (1:2.5 diluted in homogenisation buffer) were transferred to a 96-well plate. The 

measurement was performed in duplicates. Next, 200 µL of working reagent (BCA Reagent 1 
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and BCA reagent 2; ratio v/v 50:1) was added, thoughtfully mixed on a plate shaker and 

incubated for 30 minutes at 37°C. The absorbance was measured at 592 nm in a microplate 

reader. The protein concentration was finally determined according to a standard curve 

resulting from internal BCA standards with known protein concentrations.  

 

2.15.3. Western blot 
Protein lysates were adjusted to the same protein concentration using homogenisation buffer 

and 4x sample loading buffer (Table 4). The adjusted samples were incubated for five minutes 

at 95°C. For an optimal protein size separation, a discontinuous electrophoresis with differently 

concentrated separation gels depending on the protein size were used (Table 21).  

Table 21: Composition of stacking and separation gel 

Component 5% Stacking 
gel (4 mL) 

10% Separation 
gel (10 mL) 

12.5% Separation 
gel (10 mL) 

ddH2O 2 mL 2.5 mL 1.25 mL 

20% Gel solution 1 mL 5 mL 6.25 mL 

Separation gel buffer (pH 8.8) - 2.5 mL 2.5 mL 

Stacking gel buffer (pH 6.8) 1 mL - - 

10% APS 40 µL 100 µL 100 µL 

TEMED 4 µL 10 µL 10 µL 

 

20-50 µg protein and 5 µL TriColor protein ladder (3.5-245 kDa; biotechrabbit GmbH, 

Henningsdorf, Germany) were loaded onto the gel. In parallel, 50 µL (final volume) of 

conditioned medium was used and respectively diluted in 4x sample loading buffer. The 

separation was performed at 80 V (stacking gel) and 120 V (separation gel) until the desired 

separation of protein samples was accomplished.  

Size fractioned samples were transferred onto nitrocellulose membrane (Optitran BA-S85, GE 

Healthcare) using 1x transfer buffer (Table 4) for semi-dry sandwich principle. Depending on 

the protein size, the blotting was performed at 25 V for 30-45 minutes. In order to guarantee a 

successful protein transfer, the nitrocellulose membrane was stained with 1x Ponceau S 

staining solution (Table 4). The staining solution was removed and the membrane was blocked 

for one hour in blocking solution (Table 4) at RT.  
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The membrane was then incubated with the primary antibody (diluted in blocking solution) 

overnight at 4°C. The next day, the nitrocellulose membrane was washed three times with 1x 

TBS-Tween solution and incubated with the secondary antibody (diluted in blocking solution) 

for one hour at RT. The nitrocellulose membrane was again washed three times with 1x TBS-

Tween, incubated for one minute in ECLTM Prime (GE Healthcare) solution and exposed to an 

X-ray film (Amersham HyperfilmTM ECL, GE Healthcare) for one minute. The X-ray film was 

developed using the developer (GPX Developer and replenisher, Kodak), followed by fixer 

(GPX Fixer and replenisher, Kodak). For normalisation reasons, all performed Western blot 

were normalised to either Ponceau S staining or the housekeeping gene β-actin.  

 

2.15.4. Dot blot  
The Dot blot technique allows a semi-quantitative detection of proteins without a prior size-

fractioning. A nitrocellulose membrane was thereto shortly equilibrated in 1x transfer buffer 

and mounted into the Dot blot apparatus. The membrane was washed twice with 200 µL 

1x TBS (Table 4) and pre-loaded with 200 µL 1x TBS/well. Depending on the used cell line, 

150-250 µL of conditioned media was directly transferred to each well. The vacuum was 

applied and the membrane afterwards washed twice with 200 µL 1x TBS. In order to guarantee 

successful and equal protein transfer, the nitrocellulose membrane was stained with 

1x Ponceau S staining solution. The further procedure is in parallel to Western blot technique. 
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2.15.5. Selenoprotein P-ELISA 
In order to quantify SEPP concentrations in conditioned cell culture media; the colorimetric 

enzyme immunoassay Selenotest ELISA (ICI-immunochemical intelligence GmbH, Berlin, 

Germany) was used. To this end, 100 µL of pre-diluted conditioned media (1:4 in sample 

dilution buffer (BSD)), internal standards, calibrators and blank were transferred to a 96-well 

plate. The 96-well plate is pre-coated with SEPP capture antibody. The samples were 

incubated for one hour at RT. After washing four times with 250 µL washing buffer (1x BWA in 

ddH2O), samples were incubated for one further hour at RT with 100 µL biotin-labelled SEPP-

detection antibody (1:110 DAB in antibody dilution buffer (BDA)). After additional washing 

steps, the samples were incubated with 100 µL streptavidin-peroxidase-conjugate solution (1: 

110 POD in POD dilution buffer (BPO)) for one hour at RT. The samples were again washed 

and incubated with 100 µL peroxidase substrate solution (TMB) for one further hour at RT. The 

reaction was then stopped by adding 100 µL stop solution (STO) and absorbance was 

measured at 450 nm in a microplate reader. The SEPP protein concentrations were measured 

in duplicates and calculated according to an internal standard curve.  

2.16. Enzyme assays 
 

2.16.1. GPX enzyme activity assay 
In order to determine the GPX enzyme activity, the cells were lysed as described previously. 

5-25 µL of cell homogenates were transferred to a 96-well plate. As controls, 5 µL human 

serum (positive control), Se-free treated cell homogenate (negative control) and blank 

(background control) were used in every experimental set-up. All samples were measured in 

duplicates. The following reaction mixture was prepared for one 96-well plate, and 225 µL of 

this mixture was used per reaction. 

 21.5 mL Basic buffer (Table 5) 
 250 µL 10% Triton-X (1:10 Triton-X in ddH2O) 
 150 µL 53.7 mM NADPH (NADPH in 10mM KPO4-buffer pH 7.0) 
 250 µL 100 mM reduced GSH (GSH in ddH2O) 
 25 µL Glutathione reductase (GR, 1:7 in 3.2 M ammonium 

sulphate) 
 22.2 mL final volume 

 

To start the reaction, 10 µL 3.75x10-3% H2O2 (1:8000 30% H2O2 in ddH2O) was added and 

GPX enzyme activity was measured as decreasing absorbance (ΔE) at 340 nm using a 

spectrophotometer. GPX enzyme activity is thereby measured indirectly as follows: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 2 𝐺𝐺𝐺𝐺𝐺𝐺 
𝐺𝐺𝐺𝐺𝐺𝐺
�⎯�  𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐻𝐻2𝑂𝑂

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐻𝐻+
(340𝑛𝑛𝑛𝑛) + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝐺𝐺𝐺𝐺𝐺𝐺
�⎯�  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+ + 2 𝐺𝐺𝐺𝐺𝐺𝐺

 

The GPX enzyme activity was determined as ΔE per minute, normalised to protein 

concentration and calculated as follows  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚�
=

ΔE340𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 [𝐿𝐿]

6200 � 1
𝑀𝑀 × 𝑐𝑐𝑐𝑐� × 𝑑𝑑[𝑐𝑐𝑐𝑐] × 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑚𝑚𝑚𝑚]

 

With m= protein amount [mg] and 6200 � 1
𝑀𝑀×𝑐𝑐𝑐𝑐

� × 𝑑𝑑[𝑐𝑐𝑐𝑐] as light path.  

 

2.16.2. TXNRD enzyme activity assay 
The cell lysates were homogenised as described previously and 10-25 µL of these 

homogenates were transferred to a 96-well plate. The samples and controls were measured 

in duplicates. Se-treated cells (positive control), Se-free treated cells homogenate (negative 

control) and blank (background control) were used as control. 200 µL of the following reaction 

mixture was added to every sample.  

158.2 µL ddH2O 
20 µL 1M potassium phosphate buffer (pH 7.0) 
16 µL 63.07 mM DTNB (DTNB in DMSO) 
4 µL 0.5 M EDTA (EDTA in ddH2O pH 8.0 
1 µL 53.7 mM NADPH (NADPH in 10mM KPO4-buffer pH 7.0) 

0.8 µL 50 g/L BSA (BSA in 10 mM 10mM KPO4-buffer pH 7.0) 
200 µL final volume 

 

The increasing absorbance (ΔE) was measured at 412 nm using a spectrophotometer. The 

TXNRD enzyme activity is indirectly determined as follows:  

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
𝑅𝑅−𝑆𝑆𝑆𝑆
�⎯⎯�  2 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(412𝑛𝑛𝑛𝑛) + 𝑅𝑅𝑅𝑅 − 𝑆𝑆𝑆𝑆 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐻𝐻+  + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑅𝑅𝑅𝑅−𝑆𝑆𝑆𝑆
�⎯⎯⎯�  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅(𝑆𝑆𝑆𝑆)2 

The resulting ΔE was then normalised to the protein concentration and the activity was 

calculated as follows: 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚�
=

ΔE412𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 [𝐿𝐿]

2 × 13000 � 1
𝑀𝑀 × 𝑐𝑐𝑐𝑐� × 𝑑𝑑[𝑐𝑐𝑐𝑐] × 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑚𝑚𝑚𝑚]

 

With m= protein amount [mg], 13000 � 1
𝑀𝑀×𝑐𝑐𝑐𝑐

� × 𝑑𝑑[𝑐𝑐𝑐𝑐] as extinction coefficient and light path, 

respectively, and 2 as stoichiometric ratio to consider the conversion of DTNB to two 2-Nitro-

5-mercapto-benzoid-acid (TNB). 

 

2.16.3. DIO1 enzyme activity assay 
For the DIO1 activity enzyme assay, the cells lysates were processed as indicated previously. 

40 µL of the cell lysate was hence transferred to 8-tube PCR-stripes and 10 µL homogenisation 

buffer or 10 µL PTU (10 mM) as background control, was added. The reaction was started by 

adding 50 µL of the following substrate mix:  

10 µL 1 M potassium phosphate buffer (pH 6.8) 
4 µL DTT (1 M) 
1 µL 1 mM rT3 (Sigma-Aldrich, Hamburg, Germany) 

35 µL ddH2O 
50 µL final volume 

 

The samples and controls were measured in duplicates. For each experiment, Se-free 

(negative control) and 100 nM Na2SeO3 (positive control) supplemented cells were used. The 

reaction was incubated for six hours at 37°C in a thermo shaker and immediately stopped on 

dry ice.  

In order to precipitate the cellular debris, the reaction was centrifuged for five minutes at 12,000 

rpm and 4°C. 75 µL of the supernatant and 100 µL of 10% acetic acid were transferred to a 

pre-equilibrated Dowex column (Dowex® 50W X8, Serva, Heidelberg, Germany), and vacuum 

was applied. The discharged supernatant was collected and diluted 1:8 with 10% acetic acid 

to a final volume of 50 µL. The DIO1 enzyme activity was measured as amount of free iodide, 

released during DIO1-catalysed degradation of rT3 to 3,3’-T2.  
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The released iodide was determined in the Sandell-Kolthoff reaction as follows: 

 2 𝐶𝐶𝐶𝐶 (𝐼𝐼𝐼𝐼)(415𝑛𝑛𝑛𝑛) + 𝐴𝐴𝐴𝐴 (𝐼𝐼𝐼𝐼𝐼𝐼)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
�⎯⎯⎯�  2 𝐶𝐶𝐶𝐶 (𝐼𝐼𝐼𝐼𝐼𝐼) + 𝐴𝐴𝐴𝐴 (𝑉𝑉) 

Thereto, 50 µL of Iodine-determination buffer 1 and buffer 2 were added to 50 µL reaction 

mixture. The iodide concentration was determined measuring the decreasing rate of 

absorbance (415 nm) over 21 minutes and converted using as external standard curve. The 

DIO1 enzyme activity was normalised to the protein concentration and is given in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑚𝑚𝑚𝑚𝑚𝑚×𝑚𝑚𝑚𝑚

. 

2.17. Spectrometric determination of Selenium 
1 mL of conditioned medium was transferred to a nitrocellulose membrane using Dot blot 

principle. Defined punches of 4 mm diameter were taken of each dot and bound proteins were 

lysed by applying 20 µL of 60% HNO3 (containing a Ga-Standard of 1000 µg/L) to the punch. 

The reaction mixture was incubated at 70°C for 30 minutes in a thermocycler. 

The punch lysates were applied onto quartz glass sample carriers (Bruker, Berlin, Germany). 

The samples were measured in duplicates using total reflection X-ray fluorescence (TXRF) 

spectroscope S2 Picofox (Bruker, Berlin, Germany). For the verification of Se-levels, a human 

serum standard (Seronorm) was used in each experimental set-up. 

2.18. Statistics 
The Statistical analyses were performed using GraphPad Prism version 4.0 (GraphPad 

Software Inc., San Diego, USA). All results are presented as mean ± SEM and the number of 

replicates is given in the figure legends. If data followed a normal distribution, differences 

between two groups were tested using student’s t-test, multiple-group comparisons were made 

using one-way ANOVA followed by Dunnett’s Posthoc test. Non-normally distributed data were 

tested using Mann-Whitney-U test or Kruskal-Wallis test for two group respectively multiple 

group comparisons. The significance is assigned if P < 0.05 (*), P<0.01 (**) or P<0.001 (***). 
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3. Results 

3.1. Regulation of hepatic selenoprotein metabolism by IL-6  
 

3.1.1. Effects of IL-6 on hepatic SEPP expression 
The liver is one of the main effector organs of IL-6 during the immune response. It promotes, 

i.a. the release of the acute phase protein ceruloplasmin (CP). In parallel, the liver is the central 

organ of the selenoprotein metabolism, producing several antioxidative acting selenoproteins, 

e.g. GPX, TXNRD and the Se-transporter SEPP. As SEPP is not only the most important Se-

source for peripheral organs but is also negatively affected during acute phase response, 

hypoxia and IL-6, the question emerged as to how IL-6 effects the expression of SEPP and 

other selenoprotein in the liver [Becker, et al., 2014; Renko, et al., 2009; Wiehe, et al., 2016]. 

 

Using the human hepatoma cell lines HepG2 and Hep3B, the effect of IL-6 on the SEPP 

expression was investigated. We found that IL-6 strongly down-regulated the SEPP expression 

level in both cell lines (Figure 11). The IL-6-mediated decrease of SEPP expression effects 

both extra- and intracellular SEPP (Figure 11 A+B). Furthermore, down-regulation of SEPP 

protein expression in response to IL-6 occurred in a dose-dependent manner by more than 

50% as compared to untreated cells (Figure 11 C). These effects were not linked to toxicity, 

as a cell viability test of HepG2 cells showed that IL-6 at a concentration range of 0.1-500 

ng/mL had no ill effects. Similar to the finding in HepG2 cells, IL-6 down-regulated SEPP 

expression in Hep3B cells (Figure 11 D).  

 

In order to understand the underlying mechanism of IL-6-mediated SEPP down-regulation, the 

effect of IL-6 on the SEPP transcript level was investigated in HepG2 cells. As CP is a target 

gene of IL-6, it was used as positive IL-6 induction control. IL-6 induced the CP transcript level 

independent of Se-supplementation (Figure 11 E). The SEPP transcript level was strongly 

promoted by Se-supplementation when compared to Se-depleted cells. Although the SEPP 

transcript level was significantly reduced by IL-6 in both Se-supplement and Se-depleted cells, 

the absolute SEPP transcript level in Se-supplemented cells was markedly higher. Overall, 

these findings indicate that supplemental Se attenuates the inhibitory effect of IL-6. 
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Figure 11: IL-6 down-regulates the SEPP expression in HepG2 and Hep3B cells. 

Se-supplemented and Se-depleted HepG2 cells were stimulated with a standard IL-6 concentration of 100 ng/mL 

for 48 hours. (A) IL-6 markedly induced the expression of its target gene CP and significantly down-regulated the 

SEPP expression (B) The absolute SEPP-concentration secreted into cell culture medium was significantly reduced 

by IL-6. (C) IL-6 decreased the SEPP expression by more than 50% in a dose-dependent manner. (D) In parallel, 

IL-6 reduced the SEPP expression in Hep3B cells as observed by Dot blot analysis. (E) On transcriptional level, IL-

6 significantly induced CP, while the SEPP transcript level was strongly reduced by more than 50% when compared 

to the control, in both Se-depleted and Se-supplemented cells (Mean ± SEM, n=6).  
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The regulation of IL-6 target genes is mainly mediated by the activation of the JAK-STAT 

signalling pathway [Schmidt-Arras and Rose-John, 2016]. As IL-6 signalling is not exclusively 

mediated via the transcription factor STAT3, it was tested whether STAT3 is the main mediator 

of IL-6 signalling in HepG2 and Hep3B cells. To this end, HepG2 cells were transiently 

transfected with different reporters containing the response elements for NF-κB, AP-1 and 

STAT3. The cells were then stimulated with 0, 1, 10 and 100 ng/mL IL-6 for 24 hours. While 

no changes of the reporter response containing the NF-κB or AP-1 response elements were 

observed (Figure 12 A), IL-6 significantly induced the STAT3 response element in a dose-

dependent manner (Figure 12 A + B).  

 

Figure 12: IL-6 down-regulates the SEPP promoter activity potentially via STAT3. 

HepG2 and Hep3B cells were transiently transfected with reporter construct containing the response element for 

STAT3, NF-κB or the AP-1 and stimulated with 0, 1, 10 or 100 ng/mL IL-6 for 24 hours. (A) The STAT3 response 

element, but neither the NF-κB nor the AP-1 response element, were significantly induced by IL-6 in a dose-

dependent-manner and in both HepG2 and (B) Hep3B cells. In comparison, IL-6 significantly down-regulated the 

SEPP promoter activity in (C) HepG2 and (D) Hep3B cells (Mean ± SEM, n=4-6). 
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To test whether IL-6 directly regulates the SEPP expression via the promoter, an approximately 

1000 bp long SEPP promoter fragment was cloned into a FLuc-containing reporter plasmid. 

The reporter construct was then transiently transfected into HepG2 and Hep3B cells and 

subsequently stimulated for 24 hours with 100 ng/mL IL-6. The results show that the SEPP 

promoter activity was significantly down-regulated by IL-6 in HepG2 (Figure 12 C) and Hep3B 

cells (Figure 12 D) to on average of 50% as compared to the unstimulated control. 

Following steps took sets of shorter SEPP promoter fragments (874 bp, 599 bp, 298 bp, 224 

bp, 161 bp and 93 bp long promoter fragments) generated and cloned into a FLuc-reporter in 

order to narrow down the promoter region potentially underlying IL-6 signalling. The different 

SEPP-derived reporter constructs were transiently transfected into HepG2 cells and stimulated 

with increasing IL-6 concentrations for 24 hours. Changes in the promoter activity of the 

different fragments were analysed in comparison to the full-length SEPP promoter (1000 bp). 

Systemic reduction of the promoter length from 874 bp, to 599 bp, to 298 bp (Figure 13 A) and 

then to 224 bp, to 161 bp or 93 bp (Figure 13 B) from the transcription start, did not abolish an 

IL-6-mediated decrease of the SEPP promoter activity. Reducing the promoter length to 93 bp, 

the decrease in the promoter activity remained at > 50% as compared to the full-length control. 

These findings suggest that IL-6 represses the SEPP expression by targeting the SEPP 

promoter within this 93 bp promoter region.  

 

Figure 13: Refining the SEPP promoter region underlying IL-6 signalling. 

In order to narrow down the promoter region that is responsive to IL-6, the SEPP promoter was systemically 

shortened from (B) 874 bp, to 599 bp, to 296 bp and then (C) to 224 bp, to 161 bp and finally to 93 bp upstream of 

the transcription start. In all these different promoter constructs, no effect on promoter activity compared to the full-

length SEPP promoter (1000 bp) was observed. The vector backbone was used as negative control (Mean ± SEM, 

n=8). 
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3.1.2. Effects of IL-6 on hepatic GPX, TXNRD and DIO  
To overcome the pathogen triggered side of infection, the immune system responds with an 

increased production of reactive oxygen species (ROS). Uncontrolled increases of ROS may 

lead to an imbalance in redox homeostasis, which can result in damage to cellular structures 

and tissues. This ROS imbalance is restored by cellular antioxidative molecules or enzymes 

such as superoxide dismutase, catalase as well as members of the Se-families namely GPX 

and TXNRD. As IL-6 decreases the expression of SEPP to ~ 50%, the question arose whether 

this down-regulation results in a redistribution of limited Se towards the more essential and 

important antioxidative selenoproteins. To this end, it was tested whether IL-6 may indirectly 

or directly regulate the expression of these antioxidative proteins.  

A potential impact of IL-6 on GPX protein expression levels was evaluated via Western blot 

analyses and enzyme activity assays (Figure 14). Using the GPX substrate hydrogen peroxide, 

the absolute GPX enzyme activity in response to IL-6 was studied in Se-supplemented and 

Se-depleted HepG2 cells. The results show that the GPX enzyme activity essentially requires 

Se and that IL-6 further increases the Se-mediated GPX enzyme activity (Figure 14 A). In line 

with this, IL-6 slightly induced the GPX enzyme activity in Hep3B (Figure 14 B) and primary 

murine hepatocytes (Figure 14 C). 

To study in more detail a potential GPX isozyme-specific regulation by IL-6, the protein 

expression levels of the GPX isozymes GPX1, GPX2 and GPX4 were examined via Western 

blot analyses (Figure 14 D). The expression of the GPX was induced by supplemental Se, 

while the addition of IL-6 regulated the GPX expression in an isozyme-specific manner. GPX2 

protein expression was increased by IL-6, whereas GPX4 was slightly down-regulated, and 

GPX1 showed no response.  
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Figure 14: IL-6 regulates the GPX expression in hepatocytes. 

(A) HepG2 cells were stimulated with IL-6 for 48 hours in the pre- or absence of Se and the total GPX enzyme 

activity was measured in cell lysates. A sufficient Se-supplementation in form of 100 nM sodium selenite is essential 

for the GPX enzyme activity. The GPX enzyme activity is also increased in response to IL-6 (n=5). An increase of 

GPX enzyme activity was also observed in (B) Hep3B cells (n=5) and (C) primary murine hepatocytes (n=3). (D) 

Western blot analysis of HepG2 cells showed that IL-6 induced the GPX2 expression, while GPX4 was slightly 

repressed and GPX1 was not affected (Mean ± SEM). 

The transcript levels of GPX1, GPX2 and GPX4 were analysed and the expression levels were 

found to mirror that of Western blot analyses. These quantitative RT-PCR analyses revealed 

that the transcript level of GPX1 was strongly induced by Se, whereas IL-6-mediated effects 

on the GPX1 transcript level were negligible (Figure 15 A). In comparison, the GPX2 transcript 

levels were significantly increased by IL-6 (~3-fold as compared to the control), while 

supplemental Se had no effect (Figure 15 B). In line with this, the transcript level of the GPX4 

remained unaffected by Se, while IL-6 reduced the GPX4 transcript level by > 50% when 

compared to the untreated cells (Figure 15 C).  
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Figure 15: Isozyme-specific regulation of the GPX transcripts by IL-6. 

Se-supplemented and Se-depleted HepG2 cells were stimulated for 24 hours with IL-6 and the transcript levels of 

GPX1, GPX2 and GPX4 were determined via quantitative RT-PCR. IL-6 regulated the GPX transcript levels in an 

isozyme-specific manner. (A) The GPX1 transcript level was strongly induced by Se-supplementation, but an IL-6 

mediated effect on the transcript level was negligible. (B) While the GPX2 transcript level was significantly increased 

by IL-6, (C) the cytokine significantly reduced the GPX4 transcript level by >50% compared to control. The transcript 

level of GPX2 and GPX4 remained unaffected by supplemental Se (Mean ± SEM, n=4-6). 

To test whether IL-6 directly affects GPX expression via targeting their promoters, the 

regulation of IL-6 on the human-derived promoters of GPX2 and GPX4 was investigated. To 

investigate this, approximately 1000 bp of the promoter regions of GPX2 and GPX4 were 

cloned into FLuc-containing vectors and transiently transfected into HepG2 and Hep3B cells. 

The transfected HepG2 and Hep3B cells were stimulated with IL-6 for 24 hours and the 

promoter activity was analysed. (Figure 16). The data show that IL-6 significantly increased 

the GPX2 promoter activity in both cell lines (Figure 16 A), whereas IL-6 strongly repressed 

the GPX4 promoter activity (Figure 16 C). 
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Figure 16: IL-6 regulates the GPX promoter activities in a gene-specific manner. 

HepG2 and Hep3B cells were transiently transfected with approximately 1000 bp long promoter constructs derived 

from the human GPX2 and GPX4 genes. Cells were stimulated with IL-6 for 24 hours and changes in the promoter 

activity in response to IL-6 was analysed. (A) GPX2 promoter activity was significantly induced by IL-6 in both cell 

lines. (B) IL-6 markedly repressed GPX4 promoter in HepG2 and Hep3B cells (Mean ± SEM, n=4-6). 

TXNRD is a second family of selenoproteins that are involved in antioxidative defence and 

catalyse the reduction of the antioxidant thioredoxin. The effects of IL-6 on the TXNRD 

expression was investigated in parallel to GPX. However, in these analyses no consistent 

evidence for TXNRD regulation by IL-6 was found (data not shown).  

Selenoproteins are also involved in the thyroid hormone metabolism in the form of DIO, which 

catalyse the inactivation and activation of the thyroid hormones (TH) by deiodination. The 

thyroid mainly secretes the inactive TH T4 that becomes activated to active T3 by DIO1 

primarily expressed in liver. Non-thyroidal illness syndrome becomes apparent in seriously ill 

patients and is characterized by low fT3, and if persistent low fT4 serum level. 

Lipopolysaccharide (LPS)-induced NTIS serves as a model for septic shock. This model has 

shown that NTIS impairs the DIO1 expression in liver and kidney [Castro, et al., 2013]. As LPS-

induces the biosynthesis of IL-6 [Beurel and Jope, 2009], it was a clear question as to whether 

IL-6 has a negative impact on DIO1 expression in hepatocytes.  

To investigate DIO1 expression in response to IL-6, HepG2 cells were treated with IL-6 and 

the regulation of DIO1 was quantified by: enzyme activity assay, Western blot analysis, 

quantitative RT-PCR and DIO1 reporter gene assay (Figure 17).  
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Figure 17: IL-6 down-regulates DIO1 expression. 

Se-supplemented and Se-depleted HepG2 cells were treated with IL-6 for 24 and 48 hours, respectively. (A) The 

DIO1 enzyme activity was strongly diminished by IL-6 by more than 50% in comparison to control (n=6). In line with 

these findings, a reduction of DIO1 expression was observed in (B) Western blot analysis, and (C) quantitative 

Western blot evaluation using ImageJ (n=4). In parallel, a significant decreased DIO1 transcript level was detected 

(D), regardless of a Se-supplementation (n=6). (E) The DIO1 promoter activity was significantly reduced in response 

to IL-6 in in HepG2 and Hep3B cells (n=6) (Mean ± SEM). 

DIO1 enzyme activity was strongly reduced by IL-6 by more than 50% when compared to the 

control (Figure 17 A). A clear reduction of DIO1 expression was also observed at protein level 

(Figure 17 B+C), and transcript level (Figure 17 D). Furthermore, the DIO1 promoter activity 

was greatly reduced by HepG2 and Hep3B cells. Taken together these results indicate IL-6-

mediated down-regulation of DIO1 occurs directly via the DIO1 promoter (Figure 17 E).   
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3.2. Synergistic effects of pro-inflammatory cytokines on 
selenoprotein expression 

The acute phase response (APR) is highly orchestrated by the immune system to fight 

infection, inflammation or tissue injury. APR involves the elevated expression of various pro-

inflammatory cytokines including IL-6, interleukin-1β (IL-1β) and tumour necrosis factor α 

(TNFα). These cytokines act as mediators of the APR and promote the secretion of acute 

phase proteins (e.g. CRP or CP) primarily by the liver [Moshage, 1997]. Both IL-1β and TNFα 

lead to a strong production of IL-6 from a variety of cell types, e.g. endothelial cells. As it is 

known that IL-6 is able to mediate the regulation of selenoprotein expression, a possible 

synergistic effect of IL-6 with IL-1β and TNFα on selenoprotein expression and activity was 

investigated.  

To this end, HepG2 cells were treated for 48 hours with IL-6 (100 ng/mL), IL-1 β (25 ng/mL) 

and TNFα (50 ng/mL) individually or in combination. The investigation of selenoprotein 

expression was carried out using Western blot analyses and immunoassay of SEPP as 

similarly described in section 3.1. The isolated application of IL-1β and TNFα slightly induced 

the SEPP protein expression, while a single or combined stimulation with IL-6 strongly reduced 

the SEPP expression (Figure 18 A). Notably, stimulation with IL-6 in combination with either 

IL-1β, TNFα or both similarly suppressed the SEPP expression as IL-6 alone. In Hep3B cells, 

the SEPP expression was slightly reduced by IL-6, TNFα or in combination of both. In 

comparison, no effect on the SEPP expression was observed for cells treated with IL-1β alone 

(Figure 18 B). 
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Figure 18: Synergistic effects of IL-6, IL-1β and TNFα on SEPP expression. 

HepG2 and Hep3B cells were stimulated for 48 hours with IL-6, IL-1β and TNFα alone or in combination. The SEPP 

expression was determined from cell culture medium using Western blot analyses and SEPP-ELISA. (A) In HepG2 

cells, isolated application of IL-1β and TNFα induced the SEPP expression, while a single or combined stimulation 

with IL-6 strongly reduced the SEPP expression. (B) In Hep3B cells, SEPP expression was slightly reduced by IL-

6, TNFα alone or in combination. No reduction in SEPP expression was observed for IL-1β (Mean ±SEM, n=4). 

The following investigations examined the synergistic effects of IL-6, IL-1β and TNFα on the 

absolute GPX enzyme activity. Se-supplemented HepG2, Hep3B and primary murine 

hepatocyte cells were stimulated with IL-6, IL-1β and TNFα for 48 hours. The results show that 

the GPX enzyme activity in HepG2 cells was enhanced by IL-6, IL-1β and TNFα in comparison 

to Se-control (Figure 19 A). A much stronger induction of the GPX enzyme activity was 

observed with a combined stimulation with IL-6, IL-1β and TNFα. Subsequent Western blot 

analysis of GPX4 showed a slight reduction when treated with IL-1β alone or in combination 

with IL-6 and/or TNFα as compared to Se-control. However, the absolute GPX enzyme activity 

was markedly increased, despite a down-regulation of different GPX isozymes mediated by 

individual cytokines as described in section 3.1.2. In line with these findings, a combined 

stimulation with IL-6, IL-1β and TNFα significantly induced the GPX enzyme activity in Hep3B 

cells (Figure 19 B). In primary murine hepatocytes, the combination of IL-6, IL-1β and TNFα 

had no significant effect (Figure 19 C).  
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Figure 19: Synergistic effects of IL-6, IL-1β and TNFα on GPX expression. 

HepG2, Hep3B and primary murine hepatocyte cells were treated alone or in combination with IL-6, IL-1β and TNFα 

for 48 hours. (A) In HepG2 cells, GPX enzyme activity was induced by IL-6, IL-1β and TNFα when compared to the 

Se-control. A combined stimulation with these cytokines resulted in a stronger induction in GPX enzyme activity as 

compared to a single application. Western blot analysis of GPX4 showed a slight reduction when treated with IL-1β 

or in combination with IL-6 and TNFα when compared to Se-control. (B) A single application of IL-6, IL-1β and TNFα 

did not affect GPX enzyme activity in Hep3B cells, whereas cytokine combination induced the activity significantly. 

(C) In primary murine hepatocytes, single of combined application of IL-6, IL-1β and TNFα had no significant effect 

on Gpx enzyme activity (Mean ± SEM, n=3-4). 

It has been previously reported that DIO1 is down-regulated by different pro-inflammatory 

cytokines [Jakobs, et al., 2002; Xu, et al., 2014]. However, combined effects of IL-6, IL-1β and 

TNFα have not yet been studied. To investigate this relationship, we tested whether these 

cytokines have a synergistic effect on the expression of DIO1. Furthermore, the extent to which 

combination of different pro-inflammatory cytokines might promote an IL-6 mediated down-

regulation of DIO1 was investigated (Figure 20). Se-supplemented HepG2 cells were 

stimulated for 48 hours with IL-6, IL-1β and TNFα and DIO1 enzyme activity assay and 

Western blot analysis was used to determine the impact on DIO1 expression. While TNFα did 

not affect the DIO1 expression, the cytokines IL-6 and IL-1β strongly repressed the DIO1 

protein level and accordingly the DIO1 enzyme activity. More interestingly, a combined 
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stimulation with IL-6, IL-1β and TNFα repressed DIO1 protein and enzyme activity in an 

additive-like manner by more than 50% when compared to the Se-control. 

 
Figure 20: IL-6, IL-1β and TNFα repress DIO1 expression in an additive-like manner. 

HepG2 cells were treated alone or in combination with IL-6, IL-1β and TNFα, and DIO1 enzyme activity and protein 

expression were analysed. Compared to the Se-control, TNFα did not affect the DIO1 expression. IL-6 and IL-1β 

however, strongly repressed the DIO1 protein level and enzyme activity. Combining IL-6, IL-1β and TNFα repressed 

the DIO1 protein expression and enzyme activity in an additive-like manner (Mean ± SEM, n=4). 
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3.3. Regulation of selenoprotein expression by AG 
 

3.3.1. AG-induced UGA codon readthrough in selenoprotein translation  
AG negatively interfere with the mRNA proofreading process leading to misinsertion of amino 

acids, increasing error rates in protein synthesis and possible production of non-functional 

proteins. Importantly for selenoproteins, AG affect the UGA codon mandatory for incorporation 

of Sec-residues into selenoproteins. In addition to the UGA codon, each selenoprotein gene 

contains a unique SECIS-element in the 3’ UTR of the mRNA that is required for a successful 

incorporation of Sec-residues. Therefore, it was hypothesised that the AG-mediated 

misinterpretation of UGA codon and the Sec-incorporation machinery directly interfere with 

each other. To study the nature of this interference, Se-dependent reporter constructs were 

developed. These reporter constructs encode for a fusion protein of FLuc and RLuc, separated 

by a UGA codon allowing studies on: a) Sec-insertion b) UGA misinterpretation or c) early 

termination. These constructs were then stably transfected into the artificial cell model HEK293 

and a constant expression of all reporter cassettes was verified. 

From the known set of selenoprotein genes, different SECIS-elements were selected including 

one being strictly Se-responsive (GPX1), another being crucial and favourably Se-supplied 

(GPX4), or the one containing two separate SECIS-elements (SEPP). A SECIS-free reporter 

and 100% readthrough reporter were used as control. The SECIS-free reporter contains an 

UGA codon but no SECIS-element. The 100% readthrough reporter contains no stop codon 

guaranteeing an unaffected readthrough. The functionality of these reporter constructs was 

tested as response to increasing concentrations of Se (Figure 21).  
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Figure 21: UGA readthrough efficiency is SECIS-element dependent. 

The Se-response of Se-dependent reporter constructs was tested in a dose-dependent manner (0 to 250 nM 

Na2SeO3). No Se-dependent reporter activity was observed for the (A) SECIS-free reporter, and (B) the 100% 

readthrough control. In contrast, a variable Se-dependent increase was detected for all SECIS-elements tested; 

some marginal Se-dependent increase of (D) SEPP-SECIS1&2 and (E) GPX1-SECIS, and a strong increase of (E) 

SEPP-SECIS1 and (D) GPX4-SECIS (Mean ± SEM, n = 2–3). 

Both control reporters, the SECIS-free and 100% readthrough reporter, remained unaffected 

to increasing Se-concentrations (0-200 nM Na2SeO3), however basal activity intensely varied 

between the two reporters (Figure 21 A+B). The Se-dependent reporters responded to Se in 

a dose-dependent manner, although the extent of response varied between reporters (Figure 

21 C-G). In detail, the reporter containing the first SECIS-element of SEPP (SEPP-SECIS1) 

showed a strong response to Se, reaching a maximal response to supplemental Se already at 
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10 nM sodium selenite. In comparison, a combination of both SEPP-SECIS-elements (SEPP-

SECIS1&2) resulted in an only marginal sensitivity to increasing Se-concentrations. However, 

the overall translation level of SEPP-SECIS1&2 was much higher as compared to SEPP-

SECIS1 alone (Figure 21 C, D). The Se-dependent reporter derived from the Se-sensitive 

GPX1 gene responded more gradual in a concentration range from 0 to 50 nM sodium selenite 

(Figure 21 E). As opposed to that, the GPX4-SECIS construct derived from the essential 

selenoprotein GPX4 gene exhibited a similar rapid and steep response as compared to the 

SEPP-SECIS1 reporter (Figure 21 F).  

In order to identify AG impairing the Se-mediated UGA readthrough efficiency in selenoprotein 

translation, a set of different AG was tested for their UGA readthrough efficiency in SECIS-free 

reporters. To this end, stably transfected HEK293 cells were stimulated with each of two 

concentrations of different AG, and Se for 48 hours (Figure 22). 

 

Figure 22: AG potentially impairing UGA readthrough efficiency. 

Stably transfected HEK293 cells were tested for their effects on UGA readthrough efficiency in SECIS-free and 

100% readthrough control reporters. (A) The SECIS-free reporter (containing a UGA codon) showed a strong dose-

dependent response to G418, and to a lesser extent to gentamicin. (B) The 100% readthrough control reporter 

exhibited no effect during AG treatment. (Abbreviation: C= control, STR =streptomycin, AMK = amikacin, TOB = 

tobramycin, G418 = geneticin, GEN = gentamicin, NEO = neomycin (Mean ± SEM, n=3). 

While most AG, i.e., streptomycin, amikacin, tobramycin or neomycin did not affect UGA 

readthrough in the SECIS-free reporter, the AG geneticin (G418) strongly induced the UGA 

readthrough in a concentration-dependent manner (Figure 22 A). In addition, the AG 

gentamicin, often used in clinical antibiotic therapy, showed a slight dose-dependent induction 

in the UGA readthrough assay. In comparison, the 100% readthrough control vector showed 

no response to AG (Figure 22 B). Following these results, further experiments focused on the 

effects of the AG G418 and gentamicin on the UGA readthrough efficiency in Se-dependent 

reporter constructs. 



Results 

 

 84 

The previously described, stably transfected HEK293 cells were stimulated with two different 

concentrations of G418 (10 and 50 µg/mL) or gentamicin (100 and 500 µg/mL), and the effects 

were compared to the Se-control (100 nM Na2SeO3). Cell viability test using the MTT-test did 

not show any signs of cell toxicity in the applied AG concentrations.  

While the 100% readthrough control reporter was not affected by any of the two AG 

concentrations, the negative reporter was strongly induced by G418 and to a lesser extent by 

gentamicin, in a dose-dependent manner. Both control reporters remained unaffected to 

supplemental Se (Figure 23 A+B). In comparison to the four Se-dependent reporter constructs 

analysed above, some fundamental differences in the response to G418 and gentamicin were 

observed. The SEPP-based SECIS-element constructs (SEPP-SECIS1 and SEPP-

SECIS1&2) markedly differed in their response to AG. While the SEPP-SECIS1 reporter 

strongly responded to Se and G418 (Figure 23 C), the SEPP-SECIS1&2-element remained 

relatively unaffected (Figure 23 D). Both SEPP-SECIS-element constructs responded to AG in 

a similar manner as to supplemental Se (Figure 23 C, D). In comparison, the GPX1-SECIS-

element showed similarly high responses to 100 nM sodium selenite and to 10 or 50 μg/mL 

G418 (Figure 23 E). The GPX4-SECIS reporter displayed a high sensitivity to the AG-mediated 

UGA readthrough (Figure 23 F). The response of the GPX4-SECIS-element to 50 μg/mL G418 

was even higher than in response to Se-supplementation. The application of gentamicin did 

not affect any of the Se-dependent reporter constructs.  
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Figure 23: AG-induced UGA readthrough in Se-dependent reporters. 

Se-dependent and control reporters were tested with respect to AG-dependent UGA readthrough. (A) While the 

UGA readthrough of the AG-sensitive SECIS-free reporter was strongly induced in a dose-dependent manner, (B) 

no AG-driven UGA readthrough was found for the 100% readthrough reporter. A strong G418- and lower gentamicin 

response was also observed for (C) SEPP-SECIS1, (E) GPX1-SECIS and (F) GPX4-SECIS reporter construct. The 

response of (D) SEPP-SECIS1&2 reporter construct to G418 and gentamicin was relatively low (Mean ± SEM, n = 

2–3).  
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To further investigate whether Se might modulate the AG-induced UGA readthrough efficiency, 

stably transfected HEK293 cells were stimulated with G418 alone, or in combination with 

supplemental Se. The combined effect of Se and G418 was analysed as fold change 

calculated to the stimulation controls (Figure 24). While a modulatory effect of supplemental 

Se on the UGA readthrough efficiency was observed for the G418-treated SECIS-free control 

reporter (Figure 24 A), a co-stimulation with Se markedly reduced the G418-driven UGA 

readthrough of all Se-dependent SECIS reporters (Figure 24 B-D). The G418-induced UGA 

readthrough of the Se-sensitive GPX1-SECIS reporter declined from 1.6-fold to 0.8-fold under 

Se-supplementation (Figure 24 B). 

 

Figure 24: Synergistic effects of G418 and Se on Se-dependent reporters. 

To investigate whether supplemental Se alters G418-driven UGA readthrough of the SECIS-element reporters, a 

co-stimulation experiment with Se and G418 was performed. (A) No Se-mediated modulatory effect on UGA 

readthrough was observed for the SECIS-free control reporter. By contrast, a SECIS-element dependent decline in 

G418-induced UGA readthrough upon Se-supplementation was detected for (B) GPX1-SECIS, (C) GPX4-SECIS 

and to a lesser extent for (D) SEPP-SECIS1&2 (Mean ± SEM; n = 2-3). 

  



Results 

 

 87 

To concur with the previous findings, the application of Se in combination with G418 reduced 

the G418-induced UGA readthrough of the GPX4-SECIS reporter (Figure 24 C; 5.6-fold to 2.1-

fold) and to a lower extent of the less Se-sensitive SEPP-SECIS1&2 reporter (Figure 24 D; 

1.2-fold to 0.9-fold). Overall, the expression levels of all SECIS-element reporters were much 

higher in the presence of Se. These findings clearly suggest that the nature of the SECIS-

element defines whether and to what extent supplemental Se modulates the G418-mediated 

UGA readthrough.  

 

3.3.2. AG-induced modulation of hepatic selenoprotein expression 
The findings on the AG-induced UGA readthrough (described in section 3.3.1) indicate that the 

overall effect of G418 and gentamicin on selenoprotein translation relies on the interplay of 

various factors including the type of AG, the AG-concentration, the SECIS-element and the 

Se-availability [Martitz, et al., 2016]. These results lead to the question what impact can AG 

have on the expression of selenoproteins and the enzymatic activity of selenoenzymes?  

 

AG-driven effects on SEPP expression  

The Se-transporter SEPP contains two different SECIS-elements and ten UGA codons. This 

high number of UGA codons my lead to SEPP being highly sensitive to AG-induced UGA-

readthrough. As SEPP concentration declines during inflammatory diseases and negatively 

correlates with the outcome of severe sepsis, the additional application of AG may result in the 

production of Se-deficient or even Se-free SEPP worsening the Se-deficiency of peripheral 

SEPP target organs. In order to investigate AG effects on SEPP expression, human and 

murine hepatoma cells lines were stimulated with several concentrations of G418 and 

gentamicin for 48 hours. Western blot analysis of Se-depleted HepG2 cells showed that the 

intra- and extracellular SEPP expression was strongly induced by G418 in a concentration-

dependent manner (Figure 25 A), and to lesser extent by gentamicin (Figure 25 B). Compared 

to the strong inductive effects of G418, SEPP expression was only moderately promoted by 

gentamicin. For this reason, the effect of higher gentamicin concentrations was tested (Figure 

25 B). Higher gentamicin concentrations induced the SEPP expression in a concentration-

dependent manner; however, the increases were lower than in comparison to supplemental 

Se. In line with this, G418 strongly induced the SEPP expression in Hep3B (Figure 25 C) and 

the murine Hepa1-6 cells (Figure 25 D).  
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Figure 25: AG increase SEPP expression in hepatoma cell lines. 

Human and murine hepatoma cell lines were stimulated with G418, gentamicin or Se. The expression of SEPP was 

analysed via Western blot analysis and densitometrically analysed using the software ImageJ. (A) In HepG2 cells, 

G418 significantly increased the SEPP expression in a dose-dependent manner. Gentamicin increased the SEPP 

expression, but to a lesser extent as compared to G418. (B) Higher concentrations of gentamicin strongly induced 

SEPP expression in a dose dependent manner, but remained lower in comparison to cells supplemented with Se. 

(C) In Hep3B cells, G418 but not gentamicin intensely promoted the SEPP expression equally to Se. (D) G418 also 

induced the Sepp expression in murine Hepa1-6 cells in a dose-dependent manner (Mean ± SEM, n=3). 

However, much higher concentrations of G418 were required to induce Sepp expression in 

murine Hepa1-6 cells as compared to the human HepG2 and Hep3B cell lines.  
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In order to verify these findings, a quantitative analysis of SEPP was performed. G418 strongly 

increased the SEPP concentration in a dose-dependent manner and independent of 

supplemental Se (Figure 26 A).  

 

Figure 26: Synergistic effects of G418, gentamicin and Se on SEPP concentration. 

HepG2 cells were treated for 48 hours with G418 or gentamicin, and Se. Quantitative analysis of SEPP 

concentration was investigated using SEPP-ELISA. (A) G418 strongly increased the SEPP level in a dose-

dependent manner, independent of supplemental Se. Co-stimulation with sodium selenite indicated a synergistic 

effect in the SEPP expression. (B) Gentamicin did not promote the expression of SEPP (Mean ± SEM, n=6). 

However, the combined stimulation with Se increased the SEPP concentration to a greater 

extent when compared to G418 or Se alone. This outcome implies a synergistic effect of Se 

and G418 on SEPP biosynthesis. In comparison, gentamicin had no effect on the SEPP 

concentration (Figure 26 B).  

As AG interfere with the small ribosomal subunit required for transcription, the question arose 

whether AG may directly affect the gene expression of selenoproteins. To answer this point, 

HepG2 cells were stimulated with two concentrations of G418 (10 and 50 µg/mL), gentamicin 

(100 and 500 µg/mL) and Se. The regulation of gene expression was then analysed by 

quantitative RT-PCR (Figure 27). The DNA damage-inducible transcript 3 (DDIT3) has recently 

been identified as an AG-sensitive transcript and was used as positive AG-control in all 

experiments [Tao and Segil, 2015]. DDIT3 induces i.a. cell cycle arrest and apoptosis in 

response to ER stress. DDIT3 showed a dose-dependent induction in transcript level for G418, 

and minor for gentamicin (Figure 27 A). An application of 50 µg/mL G418 resulted in an 

extraordinarily strong induction of DDIT3 (12-fold as compared to negative control). It is 

interesting to note that G418 and Se increased the SEPP transcript level in a similar manner 

(G418; 4.4-fold above control versus Se; 4.1-fold above control), while a gentamicin-mediated 

effects were negligible (Figure 27 B). Collectively, these findings show that AG affect the SEPP 

transcript level and SEPP protein level.   
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Figure 27: G418 and gentamicin affect the SEPP transcript level. 

HepG2 cells were stimulated with 10 or 50 µg/mL G418, 100 or 500 µg/mL gentamicin, and Se for 24 hours. The 

SEPP transcript level was analysed using quantitative RT-PCR. (A) The DNA damage-inducible transcript 3 (DDIT3) 

used as positive control for AG stimulation, showed a dose-dependent induction in transcript level for both, G418 

and gentamicin. 50 µg/mL G418 led to an extraordinarily strong induction of the DDIT3 transcript level (12-fold 

compared to negative control). (B) G418 and Se strongly increased the SEPP transcript level in a comparable 

manner; while gentamicin had no significant effect (Mean ± SEM, n=4). 

In a next step, we wanted to test whether the AG-induced misinterpretation of UGA codon 

leads to the insertion of alternative amino acids resulting in the biosynthesis of Se-poor SEPP 

isoforms. For this reason, conditioned media of Se- or AG-stimulated HepG2 cells were 

collected and SEPP was immobilised on a size-defined nitrocellulose membrane using Dot 

blot technique and the SEPP bound Se was quantified as described in section 2.17 (Figure 

28). In line with the previous results, Se (100 nM Na2SeO3) or G418 (100 µg/mL) induced 

SEPP biosynthesis in a similar manner (Figure 28 A). The combined application of G418 with 

increasing Se-concentrations led to a significant and additive rise in total SEPP-concentration 

in comparison to a single application of G418 or Se.  
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Figure 28: G418 promotes the biosynthesis of Se-deficient SEPP. 

HepG2 cells were treated with G418, Se (100 nM sodium selenite) or G418 co-supplemented with 25, 50 or 100 

nM sodium selenite. (A) SEPP concentrations indicate that G418 and Se individually induced increases of SEPP 

biosynthesis to a similar extent, whereas G418 co-supplemented with Se resulted in a significant and additive 

increase in SEPP expression. (B) No Se was detected in the immobilised proteins of cells left untreated or 

supplemented with G418. Co-simulation of G418 with increasing concentrations of Se led to an increase of Se-

content of the immobilised proteins in a dose-dependent manner and even higher than Se- or G418-

supplementation alone. (C) The molar ratio of Se per SEPP showed that G418-induced SEPP production contains 

no Se, but that supplemental Se was able to overcome this negative effect (Mean ± SEM, n=3). 

The analysis of Se-content indicated that the immobilised proteins isolated from untreated or 

G418-treated HepG2 cells had no detectable Se (Figure 28 B). A co-supplementation with 

increasing Se-concentrations enlarged the Se-concentration in the immobilised proteins, 

irrespective of G418 presence. Finally, the molar ratio of Se per SEPP (Se/SEPP) 

demonstrated that SEPP synthesised by G418-treated cells was largely devoid of any Se. It is 

interesting to note that the G418-induced lack of Se-incorporation into SEPP was overcome 

by supplementing with Se. This results indicate that AG-induced UGA misinterpretation and 

failure of Sec-insertion can be prevented through Se-supplementation (Figure 28 C).  
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AG-mediated effects on hepatic GPX and DIO1 

The previous investigations on AG-induced UGA codon readthrough of the selenoproteins 

SEPP, GPX1 and GPX4 have illustrated a SECIS-element-specific response to AG and Se. 

While the SECIS-element that originated from the Se-sensitive GPX1 gene appeared to be 

highly AG-sensitive, the GPX4-derived SECIS-element was less dynamic. With this disparity 

in SECIS-response, we hypothesised that the AG-induced UGA readthrough also affects the 

expression and enzymatic activity of these selenoproteins in a similar isozyme-specific 

manner.  

In order to prove this hypothesis, Se-supplemented and Se-depleted hepatocytes were 

stimulated with G418 (10 µg/mL or 50 µg/mL) and gentamicin (100 µg/mL or 500 µg/mL) for 

48 hours and the changes in GPX expression levels were analysed. In line with earlier findings, 

G418, but not gentamicin induced the protein expression of GPX1, GPX2 and GPX4 (Figure 

29 A). The G418-induced increase of GPX1 and GPX4 protein expression appeared to be 

more prominent in comparison to the GPX2 isozyme. However, G418 was unable to increase 

GPX expression to a similar extent to that of supplemental Se. Although in the Se-depleted 

HepG2 cells G418 slightly promoted the biosynthesis of GPX, GPX enzyme activity was not 

detectable (Figure 29 B). Similar findings were made in Se-depleted cells stimulated with 

gentamicin. However, when the HepG2 cells were stimulated with G418 or gentamicin in 

combination with Se, the GPX enzyme activity exhibited a similar level as Se-supplemented 

cells alone. 
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Figure 29: G418 and gentamicin affect the GPX expression. 

Se-supplemented and Se-depleted HepG2, Hep3B and primary murine hepatocyte cells were stimulated with G418 

(10 µg/mL or 50 µg/mL) and gentamicin (100 µg/mL or 500 µg/mL) for 48 hours. (A) Western blot analysis of HepG2 

cells demonstrate that 50 µg/mL G418 induced GPX protein expression, but remained markedly below the Se-

control. A slightly greater induction of GPX1 and GPX2, compared to GPX4 was observed when stimulated with 50 

µg/mL G418. Gentamicin had no effect. (B) In Se-depleted HepG2 cells, no GPX enzyme activity was detectable 

when treated with G418 or gentamicin alone. A combined stimulation with Se resulted in a comparable increase 

when compared to the Se-control. Similar effects were observed for (C) Hep3B cells and (D) primary murine 

hepatocytes (Mean ± SEM, n=3-4). 

Similar results were observed in Hep3B cells (Figure 29 C) and primary murine hepatocytes 

(Figure 29 D). It is noteworthy that the GPX enzyme activity in Se-supplemented hepatocytes 

was slightly higher when stimulated with gentamicin rather than G418.  
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Figure 30: AG affect the GPX transcript levels in HepG2 cells. 

HepG2 cells were stimulated for 24 hours with Se, G418 (10 µg/mL or 50 µg/mL) or gentamicin (100 µg/mL or 500 

µg/mL). The transcript levels of GPX1, GPX2 and GPX4 were determined by quantitative RT-PCR. (A) Se and 

50 µg/mL G418 strongly induced the GPX1 transcript level. Only minor effects were observed for gentamicin (1.5-

fold and 2.0-fold, respectively). (B) A marked increase in the GPX2 mRNA expression by 50 µg/mL G418, minor 

effects by 10 µg/mL G418 and Se, but no effects by gentamicin were noted. (C) Higher concentrations of G418 

induced the GPX4 transcript level in a similar manner to Se alone (Mean ± SEM, n=4). 

The relationship between AG and the transcript levels of GPX1, GPX2 and GPX4 was 

investigated (Figure 30). The AG-mediated induction of the transcript levels varied markedly 

between GPX isozymes. The Se-sensitive GPX1 exhibited the strongest increase in transcript 

level (9.5-fold above control). Increasing the concentrations of G418 and gentamicin, a dose-

dependent relationship between the GPX1 transcript and G418, and to a comparatively minor 

extent gentamicin was observed (1.5-fold and 2.0-fold above control, respectively) (Figure 30 

A). It is worth highlighting that 50 µg/mL G418 induced the transcript level of GPX1 to a greater 

extent than Se alone (14.0-fold to 9.5-fold). In comparison, a 3.0-fold induction in the GPX2 

transcript level was reached in cells treated with 50 µg/mL G418. The effect of Se on the GPX2 

transcript level was negligible (Figure 30 B). Higher concentrations of G418 induced highly Se-

prioritised GPX4 transcript levels similar to Se (Figure 30 C). Collectively, lower concentrations 

of G418 and gentamicin had only negligible effects on GPX2 and GPX4 transcripts.  
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In order to investigate the effects of AG on the expression and enzymatic activity of DIO1, 

HepG2, Hep3B and primary murine hepatocyte cells were stimulated with G418 (10 or 50 

µg/mL), gentamicin (100 or 500 µg/mL) and Se for 48 hours. Following stimulation, the 

transcriptional and translational levels of DIO1 and the enzyme activity were quantified. The 

results show that supplemental Se is fundamental for the basal DIO1 expression (Figure 31 

A). The DIO1 enzyme activity when stimulated with G418 or gentamicin alone remained under 

limit for detection by the assay (Figure 31 A, background threshold is indicated as the lower 

dashed line), whereas Se-supplemented cells strongly promoted the DIO1 enzyme activity. A 

combined application of Se with either G418 or gentamicin, did not alter the Se-dependent 

DIO1 enzyme activity. It is interesting to mention that DIO1 enzyme activity decreases at higher 

AG concentrations.  

 

Figure 31: Effects of G418 and gentamicin on DIO1 expression. 

Se-supplemented and Se-depleted HepG2 cells were stimulated with G418 (10 µg/mL or 50 µg/mL) and gentamicin 

(100 µg/mL or 500 µg/mL) for either 24 hour or 48 hours, and the effects on the DIO1 expression and enzyme 

activity were analysed. (A) A sufficient Se-supplementation is mandatory for a basal DIO1 enzyme activity. No 

enzymatic activity above the background threshold (indicated as lower dashed line) was observed in cells stimulated 

with G418 or gentamicin alone. A combined stimulation with Se and G418 or gentamicin showed similar enzyme 

activity levels as when stimulated with Se alone. A slight decrease in the DIO1 enzyme activity was observed at 

higher AG concentrations. (B) Western blot analysis showed an induction of DIO1 protein expression when treated 

with G418, but not in response to gentamicin. (C) The transcript level of DIO1 was 3-fold upregulated by Se, and to 

a lesser extent by G418 and even less by gentamicin (Mean ± SEM, n=4).  
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G418 marginally up-regulated the DIO1 translation (Figure 31 B) and transcription (Figure 31 

C) levels, while gentamicin-mediated effects were negligible. In order to determine whether 

up-regulation of DIO1 expression occurs pre- or post-transcriptional, the translational 

regulation of DIO1 was investigated in HEK293 cells. These HEK293 cells are stably 

transfected with an artificial DIO1 expression construct. The DIO1 expression construct 

contains the cDNA originated from human DIO1 gene, as well as a FlagTag allowing specific 

targeting by anti-Flag antibodies [Stoedter, et al., 2015]. This construct allows studies on post-

transcriptional regulations independent of promoter- or transcriptional regulation.  

 

Figure 32: AG affect the DIO1 expression on post-transcriptional level. 

Stably transfected HEK293 cells, containing a DIO1 expression construct, were stimulated with G418 and 

gentamicin in the presence or absence of Se for 48 hours. The DIO1 expression construct allows studies on post-

transcriptional regulations independent of promoter- or transcriptional regulation (A) The DIO1 protein expression 

was strongly induced by both, G418 and gentamicin in a concentration-dependent manner as compared to the 

negative control. However, the DIO1 enzyme activity in Se-depleted cells was under the detection limit of the assay 

(background threshold indicated as lower the dashed line). (B) Supplemental Se strongly increased the DIO1 protein 

expression, while no changes in the enzymatic activity were observed when co-stimulated with G418 or gentamicin 

(Mean ± Se, n=6). 
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Se-supplemented and Se-depleted HEK293 cells containing the DIO1 expression construct 

were stimulated with G418 or gentamicin, and the DIO1 protein and enzyme activity level were 

examined (Figure 32). The DIO1 protein level was strongly induced by G418 and gentamicin 

in a concentration-dependent manner, but to a lesser extent in comparison to the Se-control. 

In line with the endogenous DIO1 enzyme activity, the DIO1 enzyme activity in Se-depleted 

HEK293 cells remained under the detection limit of the assay (Figure 32 A, background 

threshold indicated as lower dashed line). While supplemental Se strongly promoted DIO1 

protein expression (Figure 32 B), Se-supplementation in combination with G418 or gentamicin 

had no additive or modulating effect on the DIO1 expression level. Collectively, these data 

show that AG induce the biosynthesis of Se-free DIO1 along with the Se-induced DIO1 

synthesis resulting in the co-existence of Se-containing and Se-free DIO1.  
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3.4. Synergistic effects of IL-6 and AG on SEPP biosynthesis 
The previous sections have only addressed the effects of IL-6 and AG (G418 and gentamicin) 

on the expression of SEPP separately. As AG are applied to critically infected patients, i.e. 

characterised by high IL-6 serum levels [Wiehe, et al., 2016], we wanted to test in a final step 

the synergistic effects between both stimuli on SEPP expression. For this reason, the impact 

of G418 or gentamicin, in combination with IL-6 on SEPP expression in HepG2 cells was 

investigated. Se-supplemented and Se-depleted HepG2 cells were stimulated with G418 or 

gentamicin in combination with IL-6 for 48 hours and changes in the SEPP expression were 

analysed by Western blot and Enzyme-linked Immunosorbent assay (Figure 33). 

 

Figure 33: Synergistic effect of IL-6 and AG on SEPP expression in HepG2 cells. 

Se-supplemented and Se-depleted HepG2 cells were stimulated with 50 µg/mL G418 or 500 µg/mL gentamicin in 

a combination with IL-6 for 48 hours. Changes in the SEPP expression in response to these stimuli were then 

analysed by Western blot analysis and Enzyme-linked Immunosorbent assay. IL-6 decreased SEPP expression, 

while G418 and but not gentamicin strongly increased the expression of SEPP. A combined stimulation of IL-6 and 

either G418 or gentamicin diminished the IL-6-mediated SEPP repression as observed in (A) western blot analysis 

and (B) Enzyme-linked Immunosorbent assay (Mean ± SEM, n=3). 
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Consistently, the SEPP Western blot analysis (Figure 33 A) and SEPP-ELISA data (Figure 33 

B) demonstrate that IL-6 down-regulated the expression of SEPP, while G418 strongly up-

regulated SEPP expression. A combined application of Se and G418 resulted in a 2.0-fold 

higher SEPP biosynthesis than supplemental Se alone. A combined stimulation with IL-6 and 

either G418 or gentamicin partially diminished the IL-6-induced decrease in SEPP expression. 

G418 has proven to promote the biosynthesis of Se-depleted SEPP, but equivalent data 

regarding the Se-load per SEPP molecule under IL-6 treatment remain unknown. Focusing on 

the interplay of G418 and IL-6 in respect to SEPP expression, we wanted to determine whether 

the SEPP synthesised in the presence of IL-6 might also be Se-deficient, or whether the IL-6-

mediated deceleration in SEPP biosynthesis may elevate the Se-incorporation into the SEPP. 

For this reason, HepG2 cells were treated with IL-6, G418 and/or Se for 48 hours and the molar 

ratio of Se per SEPP was determined as described previously (Figure 34). 

 

Figure 34: Effects of IL-6 and G418 application on the Se-load of SEPP. 

HepG2 cells stimulated with IL-6 in combination with G418 and/or Se for 48 hours. The SEPP and Se-levels were 

measured in the conditioned media. (A) Supplemental Se and G418 strongly induced the SEPP biosynthesis in 

HepG2 cells. A combined application of Se and G418 resulted in an additive increased SEPP expression, whereas 

an additional IL-6 treatment reduced the SEPP concentration. (B) In parallel, no Se was detected in the immobilised 

proteins of Se-depleted cells. A co-simulation with sodium selenite led to an increase in Se-level in both IL-6 and 

G418-treated cells. However, the Se-concentration was lower in IL-6 stimulated cells. (C) The molar ratio of Se per 

SEPP showed that Se was only detectable in immobilised SEPP when additionally supplemented Se. No 

differences in the Se-load were found in cells treated with IL-6, whereas a combination with G418 reduced the Se-

load per SEPP molecule (Mean ± SEM, n=3).  
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In agreement with previous results (Figure 33), we found that G418 induced the SEPP 

biosynthesis in Se-depleted HepG2 cells, although to a lower extent than Se alone (Figure 34 

A). This synthesised SEPP appeared to be Se-deficient (Figure 34 B). A combined application 

of Se and G418 resulted in an additive increase in the SEPP concentration as described in 

earlier findings. However, the ratio of Se per SEPP revealed a slightly lower Se-load per SEPP 

molecule in G418-treated cells. When cells were treated with IL-6 and G418, the SEPP and 

Se-levels decreased in comparison to their according control stimuli. Interestingly, the drop in 

the Se- and SEPP-levels were marginally lower in the presence of G418. IL-6 decreased the 

SEPP expression, but did not affect the Se-load per SEPP regardless of an additional G418 

application (Figure 34 C).  

Taken together, IL-6 and G418 affect the SEPP expression in a different direction and through 

different molecular mechanisms. While IL-6 down-regulates SEPP expression, G418 leads to 

an increased biosynthesis of Se-deficient SEPP isoform and simultaneously decreased Se-

loaded SEPP isoform. These different modes of SEPP dysregulation by IL-6 and G418 lead to 

a more exaggerate negative effect of SEPP.   
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3.5. Summary of results 

 

Figure 35: Graphical summary of the main results. 

▲ increased, ▲▲ strongly increased, ►unaffected, ▼decreased, ▼▼ strongly decreased 
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4. Discussion 
 

Se and selenoproteins play an important role in inflammation and immunity by regulating the 

reactive oxygen species and redox status. Some clinical trials have shown that Se and SEPP 

decrease in sepsis and negatively correlate with the severity of the disease [Angstwurm, et al., 

2007; Forceville, et al., 1998]. Other studies have concluded that supplemental Se improves 

the survival rate and leads to a more rapid improvement of organ dysfunction during sepsis 

[Angstwurm, et al., 2007]. In a study of neonates with connatal infections, the Se and SEPP 

plasma concentrations correlated inversely with IL-6 and Se positively with increasing 

gentamicin concentrations, while the plasma SEPP concentrations increased after gentamicin 

application [Wiehe, et al., 2016]. In a similar study of neonatal children with proven and clinical 

sepsis the plasma SEPP concentration dropped to a greater extent than plasma Se-

concentrations, where the IL-6 plasma concentration increased in parallel [Asci, et al., 2015].  

This work delivers insights into the molecular interplay between pro-inflammatory cytokines in 

particularly IL-6, aminoglycoside antibiotics, the Se-status and their synergistic effects on the 

expression of hepatic selenoproteins during critical illness and attempts to explain why the 

plasma Se- and SEPP-concentrations drop during sepsis. 

4.1. Pro-inflammatory cytokines redirect hepatic selenoprotein 
expression  

 

4.1.1. Pro-inflammatory cytokines reduce SEPP expression 
The acute phase response (APR) is an orchestrated response by the immune system against 

infection, inflammation or tissue injury, involving the elevated expression of different pro-

inflammatory cytokines including IL-6, IL-1β and TNFα. Although all three cytokines increase 

during the APR, IL-6 is usually detectable in high concentrations in serum during illness and 

acts as a systemic hormone [Boelen, et al., 1993]. These cytokines act as mediators of the 

APR and promote secretion of acute phase proteins by the liver [Moshage, 1997]. Liver-derived 

acute phase proteins include hepcidin, C-reactive protein, procalcitonin or ceruloplasmin (CP). 

Hepcidin, which is directly regulated by IL-6, contributes to the redistribution of iron (Fe) away 

from the circulation into intracellular storage sites and thereby reducing the availability of this 

essential trace element to the invading pathogens while supporting endogenous haemoglobin 

synthesis [Darveau, et al., 2004; Nemeth, et al., 2004].  
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The copper-transporter CP is another IL-6 regulated acute phase protein and shows increasing 

plasma concentrations under inflammatory conditions [Goldstein, et al., 1982] including sepsis 

[Chiarla, et al., 2008]. During the acute phase response, the intracellular copper levels 

decrease and the hepatocyte CP secretion increases. High copper concentrations are noted 

for their bactericidal properties. CP is capable of oxidizing toxic ferrous to the more stable ferric 

ions and thereby reducing ROS concentrations [Roeser, et al., 1970].  

Three IL-6 response elements have been identified in the CP gene [Conley, et al., 2005]. 

Intracellular IL-6 signalling classically occurs via the JAK/STAT signalling pathway and 

involves the translocation and binding of the dimerised STAT3 transcription factor to its 

response elements within the promoter of its target gene. However, subsequent studies of the 

CP promoter have shown that the IL-6-incuded CP expression involves the Forkhead box 

protein O1 (FOXO1) rather than STAT3 [Sidhu, et al., 2011]. FOXO1 is a transcription factor 

linked to the antioxidative response [Klotz, et al., 2015]. In parallel, an upregulation of SEPP 

via FOXO1 has been described [You, et al., 1994]. SEPP comprises both antioxidative and 

peroxynitrite-scavenging properties [Arteel, et al., 1998]. Beyond the antioxidative role, 

previous studies have demonstrated that for inflammation SEPP qualifies as a negative acute 

phase protein [Hollenbach, et al., 2008] and can act as the most sensitive biomarker of Se-

status in septic shock [Forceville, et al., 2009]. In this context, our data regarding an IL-6 

mediated regulation of SEPP clearly support this contrary regulation of CP and SEPP. In line 

with this, the Western blot analysis and ELISA-data collectively show that IL-6 decreases the 

secretion of SEPP by hepatocytes as shown for HepG2 and Hep3B cells (Figure 11). However, 

in this study it has been shown that the drop in secreted SEPP is not the result of reduced 

secretion, but rather caused by a direct down-regulation of SEPP biosynthesis as indicated by 

reduced SEPP transcription (Figure 11) and promoter activity (Figure 12). This result is in line 

with a recent clinical study highlighting a significant association between two SNPs 

(rs72554691; rs7719242) in SEPP with IL-6 levels [Hellwege, et al., 2014].  

Pilot studies of the human SEPP promoter suggest that the IL-6-mediated repression might 

occur via a response element within the proximal or core promoter region of the gene (Figure 

13). The strength of repression and the proximity to the transcription start imply that SEPP is 

a direct and preferred target of IL-6 signalling. However, this experimental design only allows 

a constriction of the regulatory element and further studies employing methods such as 

chromatin immunoprecipitation sequencing (ChiP-Seq) could be better suited to identify 

distinct IL-6 response element sequences.  

Repressive response elements in the human SEPP promoter have also been identified for the 

pro-inflammatory cytokines Interferon-γ (IFN-γ), IL-1β, TNFα [Dreher, et al., 1997] and the anti-
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inflammatory cytokine transforming growth factor beta (TGFβ) [Mostert, et al., 2001]. While 

IFN-γ, IL-1β and TNFα promote hepatic acute phase proteins [Gruys, et al., 2005], TGFβ is 

linked to the promotion of hepatic fibrosis and carcinogenesis [Yang, et al., 2013]. In this 

respect, the interplay the pro-inflammatory cytokines IL-6, IL-1β and TNFα on the SEPP 

expression were studied. While an isolated application of IL-1β or TNFα slightly induced SEPP 

secretion by HepG2 cells, a single or combined IL-6 treatment strongly reduced the 

biosynthesis of SEPP (Figure 18). More importantly, a combination of IL-6 with either or both 

cytokines suppressed SEPP expression even more greatly than IL-6 alone. Similarly, SEPP 

expression was found to be reduced by IL-6 in Hep3B cells in combination with other pro-

inflammatory cytokines. These findings are in agreement with a similar study by Speckmann 

et al. highlighting that the individual cytokines IL-1β, IFN-γ and TNFα reduce protein and 

transcript levels of SEPP to a minor extent, whereas a combination of these cytokines caused 

an over 50% decrease in the SEPP expression in colorectal adenocarcinoma cells Caco-2 

[Speckmann, et al., 2010]. Taken together these findings indicate that SEPP is a vulnerable 

target of depression by different pro- and anti-inflammatory cytokines and thereby highlights 

the importance of improvements to Se-metabolism during inflammatory processes. 

The liver is the central organ in systemic Se metabolism and a drop in SEPP expression leads 

onto negative effects on the peripheral Se-supply and leads to Se-deficiency of SEPP target 

tissues. The question arises how does the organism selectively down-regulates Se-availability 

to prioritise the biological use of Se. It can be assumed that the livers response to IL-6 is to 

increase intracellular Se-concentrations when hepatic SEPP expression decreases in order to 

redistribute Se and thus boosting the production of intracellular selenoproteins as observed in 

Sepp knockout mice. In these knockout mice, Se-concentrations increased especially in liver, 

but declined in serum and other organs [Schomburg, et al., 2003].  

 

4.1.2. Pro-inflammatory cytokines regulate selenoprotein expression  
To test whether the assumption holds true that hepatic SEPP expression and secretion 

decreases in order to elevate the intracellular Se-concentrations and thereby boosting the 

production of intracellular selenoproteins in liver cells, we analysed the expression of various 

hepatic selenoproteins in response to IL-6.  

In HepG2 cells, there was an overall significant increase in GPX enzyme activity and a subtle, 

but obvious trend in both Hep3B cells and primary murine hepatocytes (Figure 14). These 

finding are in accordance with a recently published study on the oxidant and antioxidant status 

in neonatal children with proven and clinical sepsis, where the erythrocyte GPX enzyme activity 
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was increased, along with IL-6 plasma concentration [Asci, et al., 2015]. However, a deeper 

view revealed an isozyme specific response to IL-6. The isozyme specificity is characterised 

by: the Se-sensitive GPX1 remaining mainly unaffected by IL-6, GPX4 showing a lower 

promoter activity (Figure 16) and significant transcript level (Figure 15). By contrast, GPX2 was 

strongly induced by IL-6, most likely via direct associations with promoter regulation. This 

association could be linked with a STAT-mediated induction of Gpx2 shown during acute colitis 

as described by Hiller et al. (2015). Co-localisation of Gpx2 and nuclear STAT3 in inflamed 

areas highlight the role of Gpx2 in inflammatory response [Hiller, et al., 2015]. In inflammation-

triggered carcinogenesis, the induction of GPX2 leads to inhibition of oxidation-induced 

apoptosis and supports the self-renewal of affected intestinal mucosa [Parkkinen, 1989]. In 

Gpx2 knockout mice, Gpx1 is able to partially compensate for the Gpx2-mediated inhibition of 

acute inflammation [Florian, et al., 2010]. In hepatocytes the up-regulation of GPX2 in response 

to IL-6 may be meaningful in the reduction of intracellular oxidative stress, which can account 

for tissue damage and further negative outcomes.  

Despite these promising findings, it cannot be proven that the observed increase in GPX 

enzyme activity solely relies on the up-regulation of GPX2, and if the increase in GPX enzyme 

activity conclusively curtails increasing levels of intracellular ROS. On the one hand, further 

experiments with GPX isozyme-specific substrates, e.g. tert-butyl hydroperoxide or cumene 

hydroperoxide, are needed in order to identify the isozyme-specific responses to IL-6. On the 

other hand, IL-6 only acts as a mediator of the acute phase response, but it does not provide 

information about the actual ROS status. Thus experiments determining the intracellular ROS-

level in relation to the individual GPX-isozymes could be achieved using the ROS indicator 

Dihydrorhodamine 123 [Yazdani, 2015]. 

This study has demonstrated that a co-application of the cytokines IL-6, IL-1β and TNFα 

resulted in an even higher GPX enzyme activity in HepG2 and Hep3B cells, and in a relatively 

subtle increase in primary murine hepatocytes. This observation provides evidence for an 

additive and thereby physiological effect. Although, the initial observations of the GPX protein 

expression levels did not explicitly support this hypothesis (Figure 19). Further studies are 

needed in order to better characterise this additive increase in GPX enzyme activity. Currently 

published but isolated studies on GPX expression in response to different cytokines point 

towards a complex picture. In human umbilical vein endothelial cells, IL-1β increased the 

expression level and enzyme activity of GPX4, and 1 ng/mL TNFα increased the GPX4 activity 

while 3 ng/mL TNFα reduced both the enzyme activity and transcript level [Sneddon, et al., 

2003]. These dynamic regulatory changes at different cytokine concentrations might explain 
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why the plasma Se strongly decreases in critical ill patients and inversely correlates with the 

mortality rate [Angstwurm, et al., 2007].  

A liver-specific inactivation of Dio1 activity in mice has illustrated that the hepatic deiodinase 

activity is dispensable for the maintenance of normal thyroid hormone levels [Streckfuss, et al., 

2005]. The investigation of DIO1 in hepatic-derived cells illustrate a strong negative impact of 

IL-6 and display a direct repression of the DIO1 promoter by IL-6 (Figure 17). These findings 

are in line with similar observations found in cell culture, rodent sepsis models and human 

patient tissues [Boelen, et al., 1996; Xu, et al., 2014]. In this context, the decrease in serum 

T3 during illness proved to be significantly related to serum IL-6 concentrations [Boelen, et al., 

1996]. DIO1 catalyses the activation of the prohormone T4 to T3. A drop in the DIO1 enzyme 

activity in response to IL-6 most likely causes a decrease of serum T3 in human patients. 

These low T3 level can manifest as low-T3 syndrome, also known as Non-Thyroidal Illness 

Syndrome (NTIS). NTIS is found in seriously ill or cachectic patients characterised by low free 

T3, elevated rT3, normal or low Thyroid-stimulating hormone, and on long-term low free T4. 

NTIS appears in many patients of the intensive care unit and correlates with a poor prognosis 

in patients with critically low T4 level [DeGroot, 2000]. As DIO1 expression is low in most 

hepatic-derived cell lines that were utilised in our studies, the findings are limited to HepG2 

cells at present. It would be of interest to study other IL-6 responsive cells to determine if effects 

on DIO1 are liver-specific or rather cause of a systemic down regulation of DIO1. The results 

of such an investigation may better explain the resulting effects on circulating thyroid hormone 

concentrations.  

The application of IL-6 in combination with IL-1β or TNFα caused a stronger and additive-like 

repression of DIO1 expression and enzymatic activity. Preliminary studies revealed that DIO1 

is repressed by various pro-inflammatory cytokines [Jakobs, et al., 2002; Xu, et al., 2014]. This 

strong repression of DIO1 in response to several pro-inflammatory cytokines might even 

worsen the clinical outcome of NTIS. Presently, our studies focused on IL-6-mediated effects 

on Se-replete cells, as hepatocytes do not experience immediate Se-deficiency in 

inflammatory diseases. This detail may explain the discordant findings in comparison to studies 

investigating serum-free, Se-deprived hepatocytes in culture [Martitz, et al., 2015; Wajner, et 

al., 2011].  
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4.2. AG interfere with selenoprotein biosynthesis  
 

4.2.1. AG-induced UGA codon readthrough is selenoprotein-specific 
Although the selenoprotein biosynthesis machinery is evolutionary well-conserved, different 

genotypes, sex- and age-specific effects [Donovan and Copeland, 2009], or changes in 

hormone [Bubenik and Driscoll, 2007] or cytokine level have proven to modulate the 

selenoprotein biosynthesis [Martitz, et al., 2015]. It is clinically necessary that certain drugs, 

e.g. statins and metformin are able to alter the biosynthesis of selenoproteins [Moosmann and 

Behl, 2004; Speckmann, et al., 2010; Speckmann, et al., 2009]. It is therefore important to 

characterise pharmacological agents that might have either a beneficial or a harmful impact 

on the expression of selenoproteins. This is particularly important for pharmaceutical agents 

that are utilised for patients with critical infectious diseases where Se- and SEPP 

concentrations are already negatively affected. 

With the previous statement in mind, the class of aminoglycoside antibiotics have moved into 

the focus of selenoprotein biosynthesis and critical illness research. Briefly, AG promote the 

misinterpretation of all UGA codons, including those found in the selenoprotein-coding open 

reading frame. Studies on the impact of AG on selenoprotein expression are limited. However, 

these few studies have already discovered a complex, rather than straightforward process that 

leads to interference with selenoprotein biosynthesis. It is this complex process we have aimed 

to unravel, particularly identifying important features that are involved in this puzzling network. 

We designed a dual luciferase-based reporter construct consisting of a fusion protein of FLuc 

and RLuc luciferase interrupted by a UGA stop codon and a selenoprotein specific SECIS-

element in the untranslated 3’UTR region (Figure 10).  

Various luciferase-based reporter constructs have been generated based on the different 

characteristics of selenoproteins, i.e. the Se-sensitive GPX1, the high-hierarchic GPX4 and 

SEPP which is the only selenoprotein gene containing two SECIS-elements and more than 

one Sec-residue, and a SECIS-free reporter that allows SECIS-independent studies of the 

UGA codon. The data presented in this study have illustrated fundamental differences in the 

reporter gene activities with respect to the Se-status (e.g. supplemented or deficient). The 

GPX1-originated SECIS-element exhibited a more steady response to Se when compared to 

the GPX4-derived SECIS-element (Figure 21). These data are in agreement with a similar 

study in HEK293 cells investigating the differential expression of GPX1 and GPX4 in relation 

to their SECIS-elements [Latreche, et al., 2012]. Unlike our reporter constructs, the UGA was 

directly cloned into the luciferase open reading frame, which bears the disadvantage when 

controlling and standardising transfection efficiencies. This study highlighted that the UGA 
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readthrough efficiency strongly depends on the nature of the SECIS-element, but also of the 

translation factors EFsec and SBP2 [Latreche, et al., 2012]. 

With respect to the two SECIS-elements found in the human SEPP gene, we also found great 

differences in their Se-response. While the SECIS1-element was Se-responsive, a tandem of 

both SECIS-elements (SECIS1&2) showed only a gradual response to Se, even at higher Se-

concentrations. These findings are in agreement with a detailed study on the different functions 

of the two SEPP SECIS-elements and the different efficiency of UGA recoding. While SECIS1 

is essentially required for the biosynthesis of full-length SEPP, SECIS2 is needed for recoding 

the first UGA in the SEPP transcript. SECIS2 functions as a control point for synthesis requiring 

the presence of additional factors (e.g. Sec) and thus is key to SEPP translation [Stoytcheva, 

et al., 2006]. This function may rationalise the low UGA recoding efficiency observed for 

SECIS2. Collectively, these studies provide some explanation of the mechanism affecting the 

hierarchy of selenoproteins [Martitz, et al., 2015; Schomburg and Schweizer, 2009]. 

We have screened several AG (streptomycin, amikacin, tobramycin, gentamicin and 

neomycin) for possible UGA readthrough (Figure 22) independent of the SECIS-element. 

Interestingly, only G418 and gentamicin were able to induce a significant UGA readthrough, 

while the effect of the other AG were negligible. Although all AG inhibit the protein biosynthesis 

via interfering with the small ribosomal subunit, the effect on the UGA readthrough differs 

markedly. In this context, a comparative analysis of the effect of AG on bacterial protein 

synthesis in vitro revealed great differences in their protein inhibition response [Zierhut, et al., 

1979]. Accordingly, AG are clustered into three groups. Firstly, AG that inhibit the protein 

biosynthesis in a monophasic way potentially via one single inhibitory site. Examples for this 

include streptomycin and hygromycin B. Secondly, AG that inhibit the protein synthesis in a 

triphasic way indicating a multiple interaction of AG and ribosome. Gentamicin, neomycin and 

tobramycin belong to this category. Interestingly, these AG promote the synthesis of prolonged 

proteins rather than early termination. Lastly, AG such as garamine and lividamine respond in 

a biphasic way [Zierhut, et al., 1979]. The different AG excretion rates, AG uptake rates, toxicity 

levels and affinity to the ribosome are additional factors explaining the great differences in their 

effects on the UGA readthrough efficiency. Collectively, these aspects might explain the 

observed differences in the UGA readthrough by different AG.  

Currently published studies that investigated effects of AG on selenoprotein expression have 

mainly focused on geneticin (G418). However, G418 is not regularly used in the clinics, but is 

structural similar to the clinically applied gentamicin. Our data collectively demonstrate that 

G418 supports a several-fold higher UGA readthrough than gentamicin (Figure 23). These 

findings are in agreement with previous studies comparing different AG in different reporter 
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systems where G418 but not gentamicin, tobramycin or amikacin were able to strongly induce 

the translational readthrough of the stop codon (UAG A) as studied in therapeutic strategies of 

proximal spinal muscular atrophy [Heier and DiDonato, 2009].  

On average, the G418-sensitivity of the different SECIS-reporters was qualitatively very similar 

to their Se-response (Figure 23). These findings highlight that both processes may interact 

with each other, by either direct interference, synergism or neutralisation. The nature of this 

interaction was tested by a combined application of Se and G418. We found that the GPX1-

derived SECIS reporter showed a similar response to supplemental Se when compared to a 

combination of Se and G418 (Figure 24). By contrast, the GPX4-originated reporter construct 

exhibited a synergistic maximal expression upon stimulation with the combination of Se and 

G418. These different findings highlight the importance of the SECIS-element for the 

interaction and imply that different selenoprotein transcripts are not equally affected by AG and 

the actual Se-status. As the SECIS-element sequences of the 25 human selenoprotein genes 

share only few sequence similarities, it will be mandatory to compare their specific sensitivities 

to AG-mediated readthrough side by side, and then to predict the modulating effects of Se-

supplementation on this interference in order to extrapolate potential effects on their relative 

biosynthesis in patients under AG treatment.  

Although a general effect of AG on biosynthesis of selenoproteins has been shown before 

[Gupta and Copeland, 2007; Handy, et al., 2006; Tobe, et al., 2013], there is little information 

about the interplay of the AG with other selenoprotein-specific factors [Martitz, et al., 2016]. In 

this respect, our findings revealed that the UGA recoding efficiency depends on the chosen 

AG, the particular SECIS-element and the actual Se-status. As our results were obtained in 

human cells, the data complete similar findings of Grupta et al. who revealed the interplay 

between translation termination, Sec codon context, and Sec-insertion sequence-binding 

protein 2 (SBP2) in a rabbit reticulocyte system [Gupta and Copeland, 2007]. The findings are 

also in agreement with Handy et al. showing the differences in the response of Se-depleted 

vs. Se-supplemented COS7 cells to G418-induced readthrough [Handy, et al., 2006]. Notably, 

the data complement earlier findings towards a clear dependence upon the individual SECIS-

element.  

Despite these findings, our studies are limited in some respects a) only a small number of 

available AG were investigated and b) only a group of four different SECIS-elements were 

studied. However, the reductive character of this system is advantageous to understand the 

molecular interplay of endogenous sequence-specific factors with translation-modulating 

activities of pharmacological interventions. For these reasons, the reporter system proves to 

be well suited in order to a) identify and characterise selenoprotein disruptors [Martitz, et al., 
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2016] or b) quantify bioactive selenocompounds in human serum samples as described in a 

similar study on the Bone morphogenic protein (BMP) responsive luciferase based reporter, 

which allows quantification of BMP concentrations in human serum [Herrera and Inman, 2009].  

 

4.2.2. AG affect the biosynthesis of hepatic selenoproteins 
 

AG induce biosynthesis of Se-deficient SEPP in the liver 

As SEPP is the only selenoprotein that comprises ten UGA codons allowing the incorporation 

of up to ten Sec-residues, we hypothesised that SEPP might be a sensitive target of AG-

mediated UGA readthrough. In contrast to other selenoproteins, Sec-residues in SEPP are 

structural components fulfilling the transport function and a single exchange of Sec with other 

amino acids would not per se disrupt, but probably diminish, its overall function. Recently 

published research has shown that in healthy subjects a subset of SEPP molecules with 

reduced Sec-content did not result from truncation of the actual protein, but arose by insertion 

of amino acids alternative to Sec [Turanov, et al., 2015]. It is important to note that the Sec-

incorporation into SEPP strongly relies on the Se-availability and will decrease, if Se becomes 

limited [Meplan, et al., 2009]. As the biosynthesis of SEPP already seems to include a reduced 

accuracy regarding the incorporation of Sec, the question emerged whether this might be 

further augmented by AG application. 

The incubation of Se-depleted hepatoma cell lines with G418 had an enormous and almost 

equal inductive effect on SEPP biosynthesis when compared to a saturating Se-

supplementation (Figure 25). Gentamicin, on the other hand, had a weaker, but still detectable 

positive effect on the SEPP biosynthesis, as found in Western blot analysis (Figure 25). It is 

worthy to mention that the inductive effect also was found in several cell types: human HepG2 

and Hep3B cells and murine Hepa1-6 cells. This evidence argues for a species independent 

effect of AG on SEPP biosynthesis. These species independent findings are further bolstered 

by similar results of earlier studies investigating the effects of AG on the UGA readthrough 

efficiency in human-, monkey- and rabbit-derived cell systems [Gupta and Copeland, 2007; 

Handy, et al., 2006; Martitz, et al., 2016]. In line with the Western blot analysis, G418 at a 

concentration of 50 µg/mL was able to promote the SEPP transcript level to a similar extent 

when compared to supplemental Se (Figure 27). 
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In line with Western blot analysis, quantitation of SEPP revealed an increase of SEPP 

biosynthesis in G418-treated cells, to a similar extent of SEPP-concentrations obtained after 

Se-supplementation (Figure 26). These results suggest an AG-driven production of Se-free 

SEPP. In order to test this assumption, the Se-content per SEPP molecule derived from Se- 

and/or G418-supplemented cells was determined (Figure 28). It was found that the G418-

derived SEPP from Se-depleted HepG2 cells was Se-free, i.e. the amount of bound Se was 

below the detection limit of this method. Notably an additional supplementation with increasing 

concentration of sodium selenite led to an increase in Se-content per SEPP and to a further 

increase of total SEPP. These findings point to an additive, inductive effect on the SEPP 

biosynthesis rather than a competition between Se and G418. It is considerable that sufficient 

supplementation with sodium selenite cannot revert the G418-induced Se-depletion in SEPP. 

However, this Se-supplementation leads to a change in the ratio of Se-depleted to Se-loaded 

SEPP in favour of the Se-loaded isoform, and thereby fulfilling its function as Se-transporter. 

These findings of G418-induced Se-depleted SEPP are in accordance with recently published 

results on gentamicin-treated neonates, where a correlation was found between gentamicin-

levels and Se-levels, but not serum SEPP levels, which also points in the direction of 

alternations to Se-load of the SEPP-bound Se-fraction [Wiehe, et al., 2016].  

During instances of critical illness, where SEPP serum concentration is low, treatment with AG 

antibiotics would further aggravate the situation by interfering with the physiological Se-

distribution system. This becomes even more relevant when patients are chronically treated 

with AG, for example in cystic fibroses. In these patients the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene contains a mutation introducing a premature termination 

signal that subsequently causes a deficiency or absence of functional chloride-channel activity. 

Under these circumstances, gentamicin treatment can cause a readthrough of this premature 

termination signal resulting in the full-length CFTR protein and thus correct the 

electrophysiological abnormalities caused by CFTR dysfunction [Wilschanski, et al., 2003]. 
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AG promote the biosynthesis of non-functional GPX and DIO1 

As AG have shown to strongly induce the biosynthesis of Se-depleted SEPP in hepatic-derived 

cells, the question arose; to what extent AG modulate the expression of selenoproteins, e.g. 

GPX and DIO1, which incorporate only one Sec-residue and might be therefore less sensitive 

to AG. Compared to the strong induction in SEPP biosynthesis by AG, the induction of GPX1, 

GPX2 and GPX4 biosynthesis was of a lesser extent (Figure 29). On average, lower 

concentrations of G418 and gentamicin had negligible effects on protein expression level of 

these GPX isozymes, while higher G418 concentrations moderately induced the protein 

expression levels. Furthermore, it appears that G418 induced the GPX biosynthesis in an 

isozyme-specific manner, where GPX1 was slightly stronger induced than GPX2 or GPX4. 

These findings are in agreement with the results from the SECIS-reporter studies where the 

GPX1-originated SECIS-element exhibited a more robust response to Se and G418 when 

compared to the GPX4-derived SECIS-element. These apparent isozyme-specific differences 

were also found at GPX transcript levels, where GPX1 showed an exceptionally high induction 

in transcript level in response to G418 (~15fold), even above the effect observed upon sodium 

selenite stimulation (~10fold). By contrast, stimulation with Se and G418 induced the GPX4 

transcript level to a smaller degree. Interestingly, the GPX2 transcript level was unaffected by 

supplemental Se, but increased in response to G418. Collectively, these findings are in 

agreement with the selenoprotein hierarchy, where GPX2 is located at the top position 

[Wingler, et al., 1999]. These findings also provide evidence that these transcripts are more 

sensitive to AG than to supplemental Se.  

Whether and to what extent the AG affect the functionality of selenoenzymes remained elusive. 

Although Western blot analysis evidently showed that G418 promotes the biosynthesis of GPX 

and DIO1 (Figure 29, Figure 31) in Se-depleted HepG2 cells, stimulation with G418 or 

gentamicin resulted in a non-detectable alterations to enzyme activity, i.e. remained below the 

detection limit of this method. When Se-supplemented hepatocytes were stimulated with G418 

or gentamicin, the GPX and DIO1 enzyme activity was comparable to the Se-supplementation 

control. As an aside, the importance of Se for the catalytic function of selenoenzymes was 

proven in Sec-substitution studies, wherein the substitution of cysteine for Sec resulted in a 

reduced catalytic efficiency of DIO1 [Berry, et al., 1993]. Collectively these findings 

demonstrate AG ability to induce the biosynthesis of selenoenzymes, although the 

selenoenzymes are not functional under Se-depleted conditions. We could conclude that a 

fraction of selenoenzymes synthesised are Se-free as found in Western blot analysis (Figure 

29 A, Figure 31 B), furthermore the additional formed selenoenzyme fraction is not functional 

as shown in investigating the enzyme activity (Figure 29 B-D, Figure 31 A). We also may 
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conclude that there would be an AG effect, which as is known, is neutral with regard to the 

overall enzyme activity. 

As G418 strongly induced the transcript level of nearly all analysed selenoproteins (Figure 27, 

Figure 30 and Figure 31), the question remained whether the increase in protein expression 

level results from increasing transcript levels. To answer this, an artificial cell model was taken 

advantage of. In this cell model, a FLAG-tagged cDNA of the human DIO1 was cloned into a 

protein expression vector and stably overexpressed in HEK293T cells [Stoedter, et al., 2015]. 

The exclusion of the promoter regions and mRNA regulatory mechanisms allows isolated 

investigations on post-transcriptional regulation and protein stability. In this respect, 

chemotherapeutic selenocompounds, namely methyl- imidoselenocarbamates, were identified 

as strong post-translational inducers of the iodothyronine deiodinases [Stoedter, et al., 2015]. 

Western blot analysis and DIO1 enzyme activity assays revealed that G418 and gentamicin 

promote the DIO1 protein expression in a concentration-dependent manner in Se-deficient 

HEK293T cells, but the induced levels were still below the Se-control. Despite this strong 

induction in the protein expression level, the DIO1 enzyme activity in Se-deficient HEK293T 

cells was below detection limit of this method, and therefore in line with previous findings 

(Figure 32). Consequently, in Se-supplemented cells neither G418 nor gentamicin altered the 

protein level and DIO1 enzyme activity level. These results clearly show that AG impact the 

biosynthesis of selenoproteins during protein translation, but not the transcriptional level, 

supporting the conclusion that AG do not appreciably impair the Se-dependent selenoenzyme 

activity.  

Although these finding demonstrate that the AG impact selenoproteins at the post-

transcriptional level by inducing an UGA readthrough, it does not explain the observed AG-

driven increase in selenoprotein transcription levels. As the AG-derived induction of 

selenoprotein expression can occur independent from the transcript level (Figure 32) and AG 

interfere irreversibly with the small ribosomal subunit, it is likely that this interference stabilises 

the mRNA and thereby protects it from NMD. Accordingly, rescue studies of the non-sense 

mutated p53 tumour suppressor gene have demonstrated that AG treatment stabilises the 

mutant mRNA, which would otherwise have been degraded by NMD [Floquet, et al., 2011]. 

NMD efficiency has furthermore shown to govern the response to gentamicin [Linde, et al., 

2007]. The GPX1 transcript is a preferred target of NMD in Se-deficiency, resulting in increased 

mRNA degradation, but Se-supplementation triggers the switch from NMD to a several-fold 

increase of GPX1 mRNA [Weiss Sachdev and Sunde, 2001]. Consequently, selenoproteins 

such as GPX1 are that exhibit a high NMD under Se-deficiency become protected from NMD 

and results in a greater increase in mRNA expression level when AG are applied. In 
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comparison, the GPX4 transcript that is not a preferred target of NMD is less affected by this 

protective mechanism. To this point, we cannot explain what minor effect on the biosynthesis 

of selenoproteins these findings comprise. Further studies on mRNA and protein stability e.g. 

by actinomycin or cycloheximide, as well as sequence analysis may reveal selenoprotein-

specific differences. 

4.3. IL-6 and AG act synergistic on SEPP biosynthesis 
In in vitro studies, we have thus far only investigated the isolated effects of IL-6, G418 and 

gentamicin on the expression of hepatic selenoproteins. In these in vitro studies, IL-6 

decreased the SEPP expression in a concentration-dependent manner and are thus in 

accordance with the findings in a cohort of neonates with connatal infections. Nevertheless, 

while G418 and gentamicin induced the synthesis of SEPP in the in vitro experiments, no such 

correlation was found between gentamicin and SEPP in the neonatal children [Wiehe, et al., 

2016]. We therefore wanted to investigate whether this differences might be caused by an 

interplay of IL-6 and AG thereby affecting SEPP expression.  

The application of either G418 or gentamicin led to diminished IL-6-mediated decreases in the 

SEPP expression. It is noteworthy that G418 increased the SEPP biosynthesis to a greater 

extent than gentamicin, as described earlier (Figure 26). However, as the application of G418 

promoted the biosynthesis of Se-deficient SEPP (Figure 28), the question emerged whether 

the diminishing effect, described above, might be a consequence from G418-induced 

biosynthesis of Se-deficient SEPP. In subsequent studies investigating the Se-load per SEPP 

molecule, we were able to confirm that the additional application of G418 reduces the amount 

of Se per SEPP molecule and irrespectively of IL-6 (Figure 34 C). As IL-6 down-regulates the 

SEPP expression, but does not alter the Se-load per SEPP molecule, it seems likely that the 

observed increase in the Se-deficient SEPP synthesis results from the G418-induced 

synthesis of Se-deficient SEPP. This would result in two possible SEPP isoforms, a Se-loaded 

SEPP isoform and Se-deficient SEPP isoform. The co-existence of both SEPP-isoforms 

seems likely as we could demonstrate an increase in the overall SEPP concentration (Figure 

33), but a reduced molar ratio of Se per SEPP (Figure 34). This hypothesis is supported by 

similar findings of Wiehe et al. (2016), where the SEPP plasma concentration increased 

significantly in the infected group after antibiotic treatment, while the total plasma Se-

supplementation remained unaffected (Figure 9 A+B) [Wiehe, et al., 2016].  
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5. Conclusion and results 
 

This work describes studies on the molecular interplay between pro-inflammatory cytokines in 

particularly IL-6, aminoglycoside antibiotics, the Se-status and their synergistic effects on the 

expression of selenoprotein in liver cells allowing a better understanding and interpretation of 

severely decreased plasma concentrations of Se and SEPP during critical illness [Angstwurm, 

et al., 2007; Forceville, et al., 1998; Hollenbach, et al., 2008].  

The Se-supply of peripheral organs, e.g. kidney or brain with Se, relies almost exclusively on 

Se-supply by liver derived SEPP. SEPP-mediated Se-transport is indispensable in 

maintenance of essential selenoproteins counteracting an increased production of ROS during 

the immune response. Since SEPP plays an important key role in the Se-distribution for the 

entire organism, it is of high importance to identify factors affecting the gene transcription or 

translation. In this regard, our study of newborns with connatal infections identified IL-6 and 

gentamicin as clinically relevant modulators of SEPP expression [Wiehe, et al., 2016]. 

Subsequent in vitro studies showed that both IL-6 and AG negatively affect the expression of 

functional SEPP, albeit by different mechanisms and in a different direction. While IL-6 directly 

induces a redistribution of hepatic selenoprotein expression in favor of antioxidative 

selenoproteins, e.g. GPX2, IL-6 greatly down-regulates the hepatic production of SEPP, 

resulting in a reduced circulating SEPP concentration (Figure 36 A) [Martitz, et al., 2015].  

This work further illustrates the complexity of how AG interfere with the selenoprotein 

biosynthesis. The AG-induced misinterpretation of the UGA codon turned out to depends on 

the specific AG, the AG concentration, the selenoprotein-specific SECIS-element and the Se-

status [Martitz, et al., 2016]. AG further promote the biosynthesis of Se-free selenoproteins 

and non-functional selenoenzymes. SEPP appeared to be the most sensitive selenoprotein to 

AG-treatment resulting in the large production of Se-free SEPP (Figure 36 B). However, the 

experiments studying an adjuvant Se-supplementation highlighted that a sufficiently high Se-

status is able to diminish the negative effects of AG on the activity of selenoenzymes and 

regular biosynthesis of SEPP.  
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Figure 36: Impact of IL-6 and AG on selenoproteins in liver and consequences for Se-metabolism. 

(A) IL-6 promotes the redistribution in hepatic selenoprotein expression in favour of antioxidative selenoproteins, 

while other selenoproteins are down-regulated. Decreased biosynthesis of SEPP by hepatocytes, results in lower 

plasma concentrations of SEPP. (B) AG promote the biosynthesis of Se-free selenoproteins, especially Se-free 

SEPP. (C) The combination of IL-6-mediated reduced SEPP expression and AG-induced synthesis of Se-free SEPP 

results in Se-deficiency and subsequently decreased selenoprotein expression in SEPP target organs including 

kidney, brain or testes. In inflammatory processes, this will consequently lead to an impaired selenoprotein 

expression in target cells and potentially an increased ROS level followed by organ damage and organ dysfunction 

(Figure was produced using Servier Medical Art). 

In summary, my data demonstrate that IL-6 and aminoglycosides inhibit the selenoprotein 

biosynthesis directly and through different molecular mechanisms. These findings are of 

particular relevance for critical Se-deficient patients, as the elevated IL-6 concentrations in 

combination with an AG treatment may severely interfere with regular SEPP expression both 

by reducing its biosynthesis and by promoting the production of Se-free SEPP. The 

consequence of these effects is an insufficient Se-supply of the peripheral and endocrine 

organs, e.g. kidney, brain, testes, or bone. A reduced expression of dispensable and more 

essential selenoproteins may result (Figure 36 C). Sequel, the antioxidative defence systems 

may become insufficiently expressed and intracellular ROS levels may increase in these 

organs, potentially leading to organ damage and eventual organ failure as found in patients 

with severe sepsis [Duran-Bedolla, et al., 2014]. These results underline the importance of the 

Se-status for a sufficient and undisturbed selenoprotein expression, particularly in critical 

illness and under clinical antibiotic treatment.  
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