652 research outputs found
PhytoMilk: Effects of botanical composition and harvest system of legume/grass silage on fatty acid, α-tocopherol and β-carotene concentration in organic forage and milk
Red clover and high proportion of forage in dairy cow diet increases the concentration of bioactive substances in milk, e.g. unsaturated fatty acids and antioxidants. In the present experiment twenty-four Swedish Red dairy cows were fed three silages in a Latin Square design to study the effect of silage botanical composition and harvest time on milk fatty acid, α-tocopherol and β-carotene concentration. The silages were red clover/grass silage (mixture of first and second cut), red clover/grass silage (mixture of first, second and third cut) and birdsfoot trefoil/grass silage (mixture of first and second cut). Botanical composition and harvest system affected silage vitamin and fatty acid concentration with higher concentrations of α-linolenic acid, α-tocopherol and β-carotene in red clover/grass silage (mixture of three harvests). Milk linoleic and α-linolenic acid concentration was higher with the two red clover diets but α-tocopherol, β-carotene and retinol concentration was not affected
Field Beans and Spring Wheat as Whole Crop Silage: Yield, Chemical Composition and Fermentation Characteristics
There has been an increasing interest in field beans (Vicia faba L.) in recent years because of its N-fixating ability. The objective of this study was to compare the yield, chemical composition and fermentation characteristics of field bean/spring wheat as whole-crop silage ensiled with and without an additive.
The crop was drilled on 27 May 2003 at a seed rate of 205 kg/ha field beans and 68 kg/ha spring wheat. The crop was harvested at four different growth stages (Zadoks et al., 1974); end of blooming, (stage 69), when 50% of the pods had reached full length, (stage 75), pods fully formed, (stage 79) and when 10% of the pods are filled (stage 81). Yield and botanical composition were evaluated. Samples of the forage were analysed for dry matter (DM) and chemical composition at harvest. Forage, at stages 75, 79 and 81 was wilted overnight then chopped (20 mm) and ensiled in 10 kg silos. Half the forage was ensiled untreated (control). The other half was treated with PROENS (60-66% formic acid and 23-29% propionic acid, Perstorp Speciality Chemicals, Sweden) applied at a rate of 6 l/t fresh matter. The silos were incubated for a period of 90 d and then analysed for DM, chemical composition and fermentation characteristics
Whole Crop Cereal Silage in Dairy Production
Whole-crop cereal silages (WCCS) are used to some extent in Sweden, but knowledge about the use of this feed for high yielding dairy cows is scarce. The crop is often harvested at different stages of maturity, from heading to yellow ripeness, which gives forages that differ in chemical composition. The purpose of this trial was to compare intake and milk production of dairy cows fed a WCCS based on barley harvested at three different stages of maturity
The effect of N-fertilisation rate or inclusion of red clover to timothy leys on fatty acid composition in milk of dairy cows fed a commercial silage:concentrate ratio
The aim of this experiment was to, under typical Swedish production conditions, evaluate the effects of grass silages subjected to different N-fertilisation regimes fed to dairy cows on the fatty acid (FA) composition of their milk, and to compare the grass silages in this respect to red clover-dominated silage. Grass silages made from first year Phleum pratense L. leys subjected to three N-fertilisation regimes (30, 90 and 120 kg N/ha, designated G-30, G-90 and G-120, respectively) and a mixed red clover grass silage (Trifolium pratense L. and P. pratense L; 60/40 on dry matter (DM) basis, designated RC G) were produced. The experiment was conducted as a change-over design, including 24 primiparous and multiparous dairy cows of the Swedish Red breed, each of which was allocated to three of the four diets. The cows were offered 11 kg DM of silage and 7 kg concentrates. The silages had similar DM and energy concentrations. The CP concentration increased with increase in N-fertilisation level. There was a linear increase in DM intake of the different silages with increased N fertilisation. There were also differences in concentrations of both individual and total FAs amongst silages. The daily milk production (kg/day) did not significantly differ between treatments, but G-30 silage resulted in higher concentrations of 18:2n-6 in the milk compared with the other two grass silages. The highest concentrations of 18:3n-3 and cis-9, trans-11 18:2 were found in milk from cows offered the RC G silage. The G-30 diet resulted in higher concentration of 18:2n-6 and the same concentration of 18:3n-3 in the milk as the other grass silages, despite lower intake levels of these FAs. The apparent recoveries of 18:3n-3 from feed to milk were 5.74%, 4.27%, 4.10% and 5.31% for G-30, G-90, G-120 and RC G, respectively. A higher recovery when red clover is included in the diet confirms previous reports. The higher apparent recovery of 18:3n-3 on the G-30 treatment may be related to the lower silage DM intake, which led to a higher relative proportion of ingested FAs originating from concentrates compared with the G-90 and G-120 diets. With the rates and types of concentrates used in this study, the achieved differences in FA composition among the silages were not enough to influence the concentrations of unsaturated FAs in milk
An Empirical Relation Between The Large-Scale Magnetic Field And The Dynamical Mass In Galaxies
The origin and evolution of cosmic magnetic fields as well as the influence
of the magnetic fields on the evolution of galaxies are unknown. Though not
without challenges, the dynamo theory can explain the large-scale coherent
magnetic fields which govern galaxies, but observational evidence for the
theory is so far very scarce. Putting together the available data of
non-interacting, non-cluster galaxies with known large-scale magnetic fields,
we find a tight correlation between the integrated polarized flux density,
S(PI), and the rotation speed, v(rot), of galaxies. This leads to an almost
linear correlation between the large-scale magnetic field B and v(rot),
assuming that the number of cosmic ray electrons is proportional to the star
formation rate, and a super-linear correlation assuming equipartition between
magnetic fields and cosmic rays. This correlation cannot be attributed to an
active linear alpha-Omega dynamo, as no correlation holds with global shear or
angular speed. It indicates instead a coupling between the large-scale magnetic
field and the dynamical mass of the galaxies, B ~ M^(0.25-0.4). Hence, faster
rotating and/or more massive galaxies have stronger large-scale magnetic
fields. The observed B-v(rot) correlation shows that the anisotropic turbulent
magnetic field dominates B in fast rotating galaxies as the turbulent magnetic
field, coupled with gas, is enhanced and ordered due to the strong gas
compression and/or local shear in these systems. This study supports an
stationary condition for the large-scale magnetic field as long as the
dynamical mass of galaxies is constant.Comment: 23 pages, 4 figures, accepted for publication in the Astrophysical
Journal Letter
The DiskMass Survey. X. Radio synthesis imaging of spiral galaxies
We present results from 21 cm radio synthesis imaging of 28 spiral galaxies
from the DiskMass Survey obtained with the VLA, WSRT, and GMRT facilities. We
detail the observations and data reduction procedures and present a brief
analysis of the radio data. We construct 21 cm continuum images, global HI
emission-line profiles, column-density maps, velocity fields, and
position-velocity diagrams. From these we determine star formation rates
(SFRs), HI line widths, total HI masses, rotation curves, and
azimuthally-averaged radial HI column-density profiles. All galaxies have an HI
disk that extends beyond the readily observable stellar disk, with an average
ratio and scatter of R_{HI}/R_{25}=1.35+/-0.22, and a majority of the galaxies
appear to have a warped HI disk. A tight correlation exists between total HI
mass and HI diameter, with the largest disks having a slightly lower average
column density. Galaxies with relatively large HI disks tend to exhibit an
enhanced stellar velocity dispersion at larger radii, suggesting the influence
of the gas disk on the stellar dynamics in the outer regions of disk galaxies.
We find a striking similarity among the radial HI surface density profiles,
where the average, normalized radial profile of the late-type spirals is
described surprisingly well with a Gaussian profile. These results can be used
to estimate HI surface density profiles in galaxies that only have a total HI
flux measurement. We compare our 21 cm radio continuum luminosities with 60
micron luminosities from IRAS observations for a subsample of 15 galaxies and
find that these follow a tight radio-infrared relation, with a hint of a
deviation from this relation at low luminosities. We also find a strong
correlation between the average SFR surface density and the K-band surface
brightness of the stellar disk.Comment: 22 pages + Appendix, 16 figures + Atlas, 5 tables. Accepted for
publication in Astronomy & Astrophysic
The DiskMass Survey. VIII. On the Relationship Between Disk Stability and Star Formation
We study the relationship between the stability level of late-type galaxy
disks and their star-formation activity using integral-field gaseous and
stellar kinematic data. Specifically, we compare the two-component (gas+stars)
stability parameter from Romeo & Wiegert (Q_RW), incorporating stellar
kinematic data for the first time, and the star-formation rate estimated from
21cm continuum emission. We determine the stability level of each disk
probabilistically using a Bayesian analysis of our data and a simple dynamical
model. Our method incorporates the shape of the stellar velocity ellipsoid
(SVE) and yields robust SVE measurements for over 90% of our sample. Averaging
over this subsample, we find a meridional shape of sigma_z/sigma_R =
0.51^{+0.36}_{-0.25} for the SVE and, at 1.5 disk scale lengths, a stability
parameter of Q_RW = 2.0 +/- 0.9. We also find that the disk-averaged
star-formation-rate surface density (Sigma-dot_e,*) is correlated with the
disk-averaged gas and stellar mass surface densities (Sigma_e,g and Sigma_e,*)
and anti-correlated with Q_RW. We show that an anti-correlation between
Sigma-dot_e,* and Q_RW can be predicted using empirical scaling relations, such
that this outcome is consistent with well-established statistical properties of
star-forming galaxies. Interestingly, Sigma-dot_e,* is not correlated with the
gas-only or star-only Toomre parameters, demonstrating the merit of calculating
a multi-component stability parameter when comparing to star-formation
activity. Finally, our results are consistent with the Ostriker et al. model of
self-regulated star-formation, which predicts
Sigma-dot_e,*/Sigma_e,g/sqrt(Sigma_e,*). Based on this and other theoretical
expectations, we discuss the possibility of a physical link between disk
stability level and star-formation rate in light of our empirical results.Comment: Accepted for publication in ApJ. 15 pages, 6 figures, 2 tables. An
electronic version of Table 1 is available by request, or at
http://www.astro.rug.nl/~westfall/research/dmVIII_table1.tx
Relative Importance of Nitric Oxide Physical Drivers in the Lower Thermosphere
Nitric oxide (NO) observations from the Solar Occultation for Ice Experiment and Student Nitric Oxide Explorer satellite instruments are investigated to determine the relative importance of drivers of short‐term NO variability. We study the variations of deseasonalized NO anomalies by removing a climatology, which explains between approximately 70% and 90% of the total NO budget, and relate them to variability in geomagnetic activity and solar radiation. Throughout the lower thermosphere geomagnetic activity is the dominant process at high latitudes, while in the equatorial region solar radiation is the primary source of short‐term NO changes. Consistent results are obtained on estimated geomagnetic and radiation contributions of NO variations in the two data sets, which are nearly a decade apart in time. The analysis presented here can be applied to model simulations of NO to investigate the accuracy of the parametrized physical drivers
Sphingosine 1-phoshpate receptors are located in synapses and control spontaneous activity of mouse neurons in culture
Sphingosine-1-phosphate (S1P) is best known for its roles as vascular and immune regulator. Besides, it is also present in the central nervous system (CNS) where it can act as neuromodulator via five S1P receptors (S1PRs), and thus control neurotransmitter release. The distribution of S1PRs in the active zone and postsynaptic density of CNS synapses remains unknown. In the current study, we investigated the localization of S1PR1-5 in synapses of the mouse cortex. Cortical nerve terminals purified in a sucrose gradient were endowed with all five S1PRs. Further subcellular fractionation of cortical nerve terminals revealed S1PR2 and S1PR4 immunoreactivity in the active zone of presynaptic nerve terminals. Interestingly, only S1PR2 and S1PR3 immunoreactivity was found in the postsynaptic density. All receptors were present outside the active zone of nerve terminals. Neurons in the mouse cortex and primary neurons in culture showed immunoreactivity against all five S1PRs, and Ca 2+ imaging revealed that S1P inhibits spontaneous neuronal activity in a dose-dependent fashion. When testing selective agonists for each of the receptors, we found that only S1PR1, S1PR2 and S1PR4 control spontaneous neuronal activity. We conclude that S1PR2 and S1PR4 are located in the active zone of nerve terminals and inhibit neuronal activity. Future studies need to test whether these receptors modulate stimulation-induced neurotransmitter release
- …