16 research outputs found

    The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control.

    Get PDF
    The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha

    A conceptual framework for a multi-criteria decision support tool to select technologies for resource recovery from urban wastewater

    No full text
    In the context of circular economy, wastewater can be used to address some of the 21st century's challenges regarding the transition to renewable resources for water, energy, and nutrients. Despite all the research, development, and experience with resource recovery from urban wastewater, its implementation is still limited. The transition from treatment to resource recovery is complex due to the difficulty of selecting unit processes from a large number of candidate processes considering the operational limitations of each process, and sustainability objectives. Presently, a multi-criteria decision support tool that deals with the difficulty of unit process selection for resource recovery from wastewater has not been developed. Therefore, this paper presents the conceptual framework of a decision support tool to find the optimum treatment train consisting of compatible unit processes which can recover water, energy and/or nutrients from a specified influent composition. The framework presents the relationship between the user input, the knowledge library of technologies and a weighted multi-objective nonlinear programming model to aid process selection. The model presented here shows, not only how the processes are selected, but also the four-dimensional sustainability impact of the generated treatment train while considering the weight provided by the user. Thus, this study presents a reproducible framework which can support private and public decision-makers in transparent evidence-based decision making and eventually the systematic implementation of resource recovery from urban wastewater

    Exploring scientific misconduct: isolated individuals, impure institutions, or an inevitable idiom of modern science?

    No full text
    This paper identifies three distinct narratives concerning scientific misconduct: a narrative of “individual impurity” promoted by those wishing to see science self-regulated; a narrative of “institutional impropriety” promoted by those seeking greater external control of science; and a narrative of “structural crisis” among those critiquing the entire process of research itself. The paper begins by assessing contemporary definitions and estimates of scientific misconduct. It emphasizes disagreements over such definitions and estimates as a way to tease out tension and controversy over competing visions of scientific research. It concludes by noting that each narrative suggests a different approach for resolving misconduct, and that the difference inherent in these views may help explain much of the discord concerning unethical behavior in the scientific community

    The role of Antarctic sea ice in global climate change

    No full text
    Taking a distinct interdisciplinary focus, a critical view is presented of the current state of research concerning Antarctic sea-ice/atmosphere/ocean interaction and its effect on climate on the interannual timescale, with particular regard to anthropogenic global warming. Sea-ice formation, morphology, thickness, extent, seasonality and distribution are introduced as vital factors in climatic feedbacks. Sea-ice / atmosphere interaction is next discussed, emphasizing its meteorological and topographical influences and the effects of and on polar cyclonic activity. This leads on to the central theme of sea ice in global climate change, which contains critiques of sea-ice climatic feedbacks, current findings on the representation of these feedbacks in global climatic models, and to what extent they are corroborated by observational evidence. Sea-ice/ocean interaction is particularly important. This is discussed with special reference to polynyas and leads, and the use of suitably coupled sea-ice/ocean models. A brief review of several possible climatic forcing factors is presented, which most highly rates a postulated ENSO-Antarctic sea-ice link. Sea-ice/atmosphere/ocean models need to be validated by adequate observations, both from satellites and ground based. In particular, models developed in the Arctic, where the observational network allows more reasonable validation, can be applied to the Antarctic in suitably modified form so as to account for unique features of the Antarctic cryosphere. Benefits in climatic modelling will be gained by treating Antarctic sea ice as a fully coupled component of global climate
    corecore