17,243 research outputs found

    The extended minimal geometric deformation of SU(NN) dark glueball condensates

    Full text link
    The extended minimal geometric deformation (EMGD) procedure, in the holographic membrane paradigm, is employed to model stellar distributions that arise upon self-interacting scalar glueball dark matter condensation. Such scalar glueballs are SU(NN) Yang-Mills hidden sectors beyond the Standard Model. Then, corrections to the gravitational wave radiation, emitted by SU(NN) EMGD dark glueball stars mergers, are derived, and their respective spectra are studied in the EMGD framework, due to a phenomenological brane tension with finite value. The bulk Weyl fluid that drives the EMGD is then proposed to be experimentally detected by enhanced windows at the eLISA and LIGO.Comment: 9 pages, 7 figure

    Extended quantum portrait of MGD black holes and information entropy

    Full text link
    The extended minimal geometric deformation (EMGD) is employed on the fluid membrane paradigm, to describe compact stellar objects as Bose--Einstein condensates (BEC) consisting of gravitons. The black hole quantum portrait, besides deriving a preciser phenomenological bound for the fluid brane tension, is then scrutinized from the point of view of the configurational entropy. It yields a range for the critical density of the EMGD BEC, whose configurational entropy has global minima suggesting the configurational stability of the EMGD BEC.Comment: 9 pages, 7 figures, matches the published versio

    Note on improvement precision of recursive function simulation in floating point standard

    Get PDF
    An improvement on precision of recursive function simulation in IEEE floating point standard is presented. It is shown that the average of rounding towards negative infinite and rounding towards positive infinite yields a better result than the usual standard rounding to the nearest in the simulation of recursive functions. In general, the method improves one digit of precision and it has also been useful to avoid divergence from a correct stationary regime in the logistic map. Numerical studies are presented to illustrate the method.Comment: DINCON 2017 - Conferencia Brasileira de Dinamica, Controle e Aplicacoes - Sao Jose do Rio Preto - Brazil. 8 page

    Classical Radiation Reaction in Particle-In-Cell Simulations

    Get PDF
    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. The Landau and Lifshitz reduced model is chosen for implementation.Comment: 12 pages, 8 figure

    Controlled Shock Shells and Intracluster Fusion Reactions in the Explosion of Large Clusters

    Full text link
    The ion phase-space dynamics in the Coulomb explosion of very large (∼106−107\sim 10^6 - 10^7 atoms) deuterium clusters can be tailored using two consecutive laser pulses with different intensities and an appropriate time delay. For suitable sets of laser parameters (intensities and delay), large-scale shock shells form during the explosion, thus highly increasing the probability of fusion reactions within the single exploding clusters. In order to analyze the ion dynamics and evaluate the intracluster reaction rate, a one-dimensional theory is used, which approximately accounts for the electron expulsion from the clusters. It is found that, for very large clusters (initial radius ∼\sim 100 nm), and optimal laser parameters, the intracluster fusion yield becomes comparable to the intercluster fusion yield. The validity of the results is confirmed with three-dimensional particle-in-cell simulations.Comment: 25 pages, 11 figures, to appear in Physical Review

    Fisher matrix forecasts for astrophysical tests of the stability of the fine-structure constant

    Full text link
    We use Fisher Matrix analysis techniques to forecast the cosmological impact of astrophysical tests of the stability of the fine-structure constant to be carried out by the forthcoming ESPRESSO spectrograph at the VLT (due for commissioning in late 2017), as well by the planned high-resolution spectrograph (currently in Phase A) for the European Extremely Large Telescope. Assuming a fiducial model without α\alpha variations, we show that ESPRESSO can improve current bounds on the E\"{o}tv\"{o}s parameter---which quantifies Weak Equivalence Principle violations---by up to two orders of magnitude, leading to stronger bounds than those expected from the ongoing tests with the MICROSCOPE satellite, while constraints from the E-ELT should be competitive with those of the proposed STEP satellite. Should an α\alpha variation be detected, these measurements will further constrain cosmological parameters, being particularly sensitive to the dynamics of dark energy.Comment: Phys. Lett. B (in press

    Spatial variations of the fine-structure constant in symmetron models

    Full text link
    We investigate the variation of the fine-structure constant, {\alpha}, in symmetron models using N-body simulations in which the full spatial distribution of {\alpha} at different redshifts has been calculated. In particular, we obtain simulated sky maps for this variation, and determine its power spectrum. We find that in high-density regions of space (such as deep inside dark matter halos) the value of {\alpha} approaches the value measured on Earth. In the low-density outskirts of halos the scalar field value can approach the symmetry breaking value and leads to significantly different values of {\alpha}. If the scalar-photon coupling strength {\beta}{\gamma} is of order unity we find that the variation of {\alpha} inside dark matter halos can be of the same magnitude as the recent claims by Webb et al. of a dipole variation. Importantly, our results also show that with low-redshift symmetry breaking these models exhibit some dependence of {\alpha} on lookback time (as opposed to a pure spatial dipole) which could in principle be detected by sufficiently accurate spectroscopic measurements, such as those of ALMA and the ELT-HIRES.Comment: 11 pages, 9 figure

    Low redshift constraints on energy-momentum-powered gravity models

    Full text link
    There has been recent interest in the cosmological consequences of energy-momentum-powered gravity models, in which the matter side of Einstein's equations is modified by the addition of a term proportional to some power, nn, of the energy-momentum tensor, in addition to the canonical linear term. In this work we treat these models as phenomenological extensions of the standard Λ\LambdaCDM, containing both matter and a cosmological constant. We also quantitatively constrain the additional model parameters using low redshift background cosmology data that are specifically from Type Ia supernovas and Hubble parameter measurements. We start by studying specific cases of these models with fixed values of n,n, which lead to an analytic expression for the Friedmann equation; we discuss both their current constraints and how the models may be further constrained by future observations of Type Ia supernovas for WFIRST complemented by measurements of the redshift drift by the ELT. We then consider and constrain a more extended parameter space, allowing nn to be a free parameter and considering scenarios with and without a cosmological constant. These models do not solve the cosmological constant problem per se. Nonetheless these models can phenomenologically lead to a recent accelerating universe without a cosmological constant at the cost of having a preferred matter density of around ΩM∼0.4\Omega_M\sim0.4 instead of the usual ΩM∼0.3\Omega_M\sim0.3. Finally we also briefly constrain scenarios without a cosmological constant, where the single component has a constant equation of state which needs not be that of matter; we provide an illustrative comparison of this model with a more standard dynamical dark energy model with a constant equation of state.Comment: 13+2 pages, 12+1 figures; A&A (in press
    • …
    corecore