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Abstract. An improvement on precision of recursive function simulation in IEEE floating
point standard is presented. It is shown that the average of rounding towards negative
infinite and rounding towards positive infinite yields a better result than the usual standard
rounding to the nearest in the simulation of recursive functions. In general, the method
improves one digit of precision and it has also been useful to avoid divergence from a correct
stationary regime in the logistic map. Numerical studies are presented to illustrate the
method.
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1 Introduction

The mathematical implementation of functions and systems in computers enables the
scientific investigation in many areas. According to [19], interferences and noises of real
systems are not incorporated into the simulations, though it is known that it is hardware
as a set of real physical systems then the noises are always present. However, limitations
of software and hardware are obstacles to the reliability of results [14, 15, 18, 22, 24, 26].
Nevertheless, alternatives have been developed to circumvent hardware shortcomings and
improve results, such as in [3, 6, 7, 17, 25]. These alternatives that restricts the effects
of hardware limitations are usually called as rigorous computing, which is based on the
development of refined methods for the implementation of algorithms [11, 14].

Chaotic systems such as discrete maps and problems involving recursive functions have
a differentiated degree of complexity, since the current iteration depends on the previous

1me rodrigues silva@hotmail.com
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ones [8]. The study of chaotic systems still receive attention and many of scientific conclu-
sions in this area relies upon computer simulation. Chaotic behaviour has been associated
to many real applications, from electronic circuits [2] to ultrasonic cutting system, which
dynamic behavior is analyzed using a two-degree-of freedom Duffing oscillator model [21].
Moreover, these iterations are usually evaluated as numerical ill-conditioned [5]. In gene-
ral, the simulation process of these types of functions involves errors and its reliability has
been questioned in many works [14, 15]. In this sense, it is well known that in a floating
point environment, a computer simulation of a chaotic system may be limited to a short
number of iterates [26]. To deal with this problem, many tools have been investigated.
We may summarize these tools in two categories. The first is focused on hardware perfor-
mance using parallel and cluster computation [16]. The second major categories is devoted
to improve the algorithm, using interval analysis, significance arithmetic or noisy-mode
computation [11]. In this paper, we focus our attention on the noisy-mode computation,
but instead of adding pseudo-random digits, as suggested in [11], we exploit the random
nature of rounding error [4, 20]. Considering that the rounding errors are uniformly dis-
tributed, we present the background necessary for the understanding of the guidelines and
the algorithm of a method that improves the precision of the computational simulation
of recursive functions. In order to prove the efficiency of the proposed strategy, we bring
examples of the logistic map case.

2 Background

This section contains some definitions about recursive functions, orbits, and interval
pseudo-orbits. Let n ∈ N, be a metric space such that I ⊆ R, and f : I → R. Thus,
recursive function can be defined as [18]:

xn = f(xn−1), (1)

or by composite functions:

xn = f1(xn−1) = f2(xn−2) = . . . = fn(x0), (2)

where f : I → I is a recursive function or a map of a state space into itself and xn
denotes the state at the discrete time n. As suggested by [13], the sequence xn obtained
by iterating Eq. (1) starting from an initial condition x0 is called the orbit of x0.

Definition 1. An orbit is a sequence of values of a map, represented by xn =
[x0,x1,...,xn].

The Definition 2. is suggested by [24] and highlights the presence of the difference
between real and computational pseudo-orbits.

Definition 2. Let i ∈ N represents a pseudo-orbit, which is defined by an initial
condition and a combination of software and hardware. A pseudo-orbit is an approximation
of an orbit and can be represented as

{x̂i,n} = [x̂i,0,x̂i,1, . . . ,x̂i,n] (3)
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such that,
| xn − x̂i,n |≤ ξi,n (4)

where ξi,n ∈ R is the limit of error and ξi,n ≥ 0.
There is not an unique pseudo-orbit, as there are different hardware, software, numeri-

cal precision standard and discretization schemes, which can produce different results and
consequently different errors ξi,n.

3 Method for error reduction

It is reasonable to assume that round-off errors are uniformly distributed [4, 9, 20, 23].
According to IEEE 754-2008 [10], the arithmetic operations are also rounded. In this sense,
we also assume here that a finite set of arithmetic function presents an error randomly
distributed.

Rounding to the nearest is the most usual for computational arithmetic. However,
there are software that enables the user to set the rounding mode towards positive infinite
or negative infinite. With these considerations in mind, we establish the main contribution
of this letter in the following Lemma.

Lemma 1. Let x̂−i,n and x̂+i,n be the calculated value by round towards positive infinite
and round towards negative infinite, respectively. The arithmetic average given by

x̂j,n =
x̂+i,n + x̂−i,n

2
(5)

such as x̂j,n = f(x̂j,n−1)+δj,n, presents an round-off error smaller than than the round-off
error due the round to nearest as n→∞, therefore δj,n < ξi,n.
Proof. Assuming Eq. (5), considering that x̂−i,n = f(x̂j,n−1)+δ

−
i,n and x̂+i,n = f(x̂j,n−1)+δ

+
i,n,

then:

x̂j,n =
f(x̂j,n−1) + δ−i,n + f(x̂j,n−1) + δ+i,n

2
⇒ x̂j,n =

2f(x̂j,n−1) + δ−i,n + δ+i,n
2

(6)

and

x̂j,n = f(x̂j,n−1) +
δ−i,n + δ+i,n

2
(7)

But, as we have been considered δ−i,n and δ+i,n uniformly distributed and it is well known
that averaging a random variable leads to a reduction of the noise power in n, which is in
this case is 2. And that completes the proof. �

The Algorithm 1 presents a pseudo-code based on the Lemma 1. The round to the
nearest is the standard mode. The operators round− and round+ stands for round towards
negative infinite and round towards positive infinite. Where there is no indication of
the round mode, one should consider as the round to the nearest. In this paper, we
implemented this algorithm in Matlab R2016a. The comparison is made with the high
precision values provided by the VPA toolbox of Matlab R2016a.
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Algorithm 1: Simulation of recursive function based on Lemma 1.

1 x̂i,0; %Initial condition
2 N ; %Number of iterates
3 x̂−i,0 ← round−(x̂i,0);

4 x̂+i,0 ← round+(x̂i,0);

5 x̂j,0 ← (x̂−i,0 + x̂+i,0)/2; %Average of the two round modes

6 x̂−i,0 ← x̂j,0;

7 x̂+i,0 ← x̂j,0;

8 For n← 1 to N %Main loop
9 x̂−i,n ← round−(f(x̂−j,n−1));

10 x̂+i,n ← round+(f(x̂+j,n−1));

11 x̂j,n ← (x̂−i,n + x̂+i,n)/2;

12 x̂−i,n ← x̂j,n;

13 x̂+i,n ← x̂j,n;

14 EndFor

4 Numerical Examples

This sections presents three numerical examples using the method proposed in this
paper. All the examples are based on the logistic map [1]

xn+1 = rxn(1− xn), (8)

where the initial condition and the value of bifurcation parameter r are indicated in each
example.

Example 4.1. Logistic map with x0 = 1/3.9 and r = 3.9.

Only using the round to nearest, the pseudo-orbit presents a chaotic behaviour. Howe-
ver, using the Algorithm 1, it is observed that the logistic map function converges to a
fixed point as shown in Table 1. As one can see, the x̂j,n reaches a fixed point, which is
the exact answer for this example, as verified in the following equations:

x1 = 3.9(1/3.9)(1− (1/3.9)) = (1− 10/39) = 29/39 (9)

x2 = 3.9(29/39)(1− 29/39) = 29/39 (10)

and 29/39 ≈ 0.743589743589744 is a fixed point, which is the value that x̂j,n converges to.
On the other hand, the pseudo-orbit x̂i,n diverges and presents a chaotic behaviour.

Example 4.2. Logistic map with r = 3.9 and x0 = 0.01.

The Figure 1 shows the logarithm (base 10) of the error for the first 20 iterates of the
logistic map, using the Algorithm 1 and a traditional method based on the round to the
nearest. The Algorithm 1 starts with an error greater than the traditional method, but
after few iterates the error becomes smaller. The error presented in Figure 1 has been
calculated by means of VPA toolbox of Matlab with 1000-digit precision.
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Tabela 1: Iterates of the logistic map with x0 = 1/3.9 and r = 3.9. x̂i,n is following the
rounding to the nearest and x̂j,n is following the Algorithm 1. The values are shown in
decimal and hexadecimal notation. Notice that the third iterate is equal to the second for
the Algorithm 1. This can be seen only in the hex format.

n x̂i,n (hex) x̂i,n (dec) x̂j,n (hex) x̂j,n (dec)

1 3fd0690690690691 0.256410256410256 3fd0690690690691 0.256410256410256

2 3fe7cb7cb7cb7cb8 0.743589743589744 3fe7cb7cb7cb7cb8 0.743589743589744

3 3fe7cb7cb7cb7cb7 0.743589743589744 3fe7cb7cb7cb7cb8 0.743589743589744

4 3fe7cb7cb7cb7cb9 0.743589743589744 3fe7cb7cb7cb7cb8 0.743589743589744

5 3fe7cb7cb7cb7cb5 0.743589743589743 3fe7cb7cb7cb7cb8 0.743589743589744

6 3fe7cb7cb7cb7cbd 0.743589743589744 3fe7cb7cb7cb7cb8 0.743589743589744

7 3fe7cb7cb7cb7cae 0.743589743589743 3fe7cb7cb7cb7cb8 0.743589743589744

8 3fe7cb7cb7cb7ccb 0.743589743589746 3fe7cb7cb7cb7cb8 0.743589743589744

9 3fe7cb7cb7cb7c93 0.743589743589740 3fe7cb7cb7cb7cb8 0.743589743589744

10 3fe7cb7cb7cb7cfd 0.743589743589751 3fe7cb7cb7cb7cb8 0.743589743589744

0 5 10 15 20 25
n

-18

-17

-16

-15

-14

-13

-12

-11

E
rr

or

Figura 1: Propagation error for the logistic map with r = 3.9 and x0 = 0.01. Traditional
method (blue). Algorithm 1 (red)

Example 4.3. Logistic map with three sets of initial conditions and bifurcation
parameter, given by (x0, r) = [(0.1,4.2); (0.2,4); (0.41,3.85)].

Table 2 shows results of ξi,n and δj,n for the first ten iterations of the logistic map case,
considering these three different set of initial conditions and bifurcation parameter. It is
possible to note a general decrease in the error that keeps along the iteration process. We
arbitrary chosen these parameters, but we have performed our tests with many other sets
with similar results.
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Tabela 2: Results of ξi,n and δj,n of the logistic map case, considering different initial
conditions, x0 and r values.

x0 = 0.1 and r = 4.2 x0 = 0.2 and r = 4 x0 = 0.41 and r = 3.85

n ξi,n δj,n ξi,n δj,n ξi,n δj,n
1 9.33254 e-18 9.33254 e-18 4.57088 e-16 1.20226 e-16 3.63078 e-16 2.69153 e-17
2 3.98107 e-17 3.31131 e-17 7.58577 e-16 9.12010 e-17 7.76247 e-16 6.76082 e-18
3 1.38038 e-16 8.31763 e-17 1.99526 e-15 2.08929 e-16 1.25893 e-15 4.67735 e-17
4 3.38844 e-16 1.17489 e-17 1.41253 e-15 6.76082 e-17 2.81838 e-15 1.28824 e-16
5 1.86208 e-15 7.58577 e-16 5.24807 e-15 2.69153 e-16 3.23593 e-15 2.51188 e-16
6 1.90546 e-15 6.91830 e-16 1.62181 e-14 8.51138 e-16 9.33254 e-15 7.07945 e-16
7 7.76247 e-15 2.81838 e-15 1.28824 e-14 6.76082 e-16 6.02559 e-15 4.67735 e-16
8 2.88403 e-14 1.04712 e-14 4.78630 e-14 2.51188 e-15 1.99526 e-14 1.54881 e-15
9 6.30957 e-14 2.29086 e-14 1.34896 e-13 7.07945 e-15 4.16869 e-14 3.23593 e-15
10 1.41253 e-13 5.12861 e-14 4.16869 e-15 1.94984 e-16 5.88843 e-14 4.46683 e-15

5 Conclusions

This paper presents a method based on the average of the round modes which promo-
tes an better performance in the simulation of recursive function. The method exploits
the stochastic nature of rounding. It consists on the average of two round mode which
promotes a reduction of the power noise by a factor of 2. This is a good example of,
although a simulation can be seen as a theoretical experiment, in fact, it presents some
real world dimension, as stochasticity, and therefore, usual tools presented in Engineering
can be applied.

We applied the method in three numerical examples. In the first case, we show that the
method is able to keep the correct fixed point, while the rounding to the nearest diverge to
chaotic behaviour. In the second and third we show the general behaviour of the method
in reducing the error of the simulation.

It is important to say that there is no significant increase of computational time and
this method can be easily extended to many other applications, such as numerical solution
of differential equations, as seen applied in [21]. In the future, we intend to investigate
the use of interval extensions and other rounding modes as further discussed in [24, 26].
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