1,058 research outputs found

    COVID-19 and Risk of Acute Ischemic Stroke and Acute Lung Injury in Patients With Type II Diabetes Mellitus: The Anti-inflammatory Role of Metformin

    Get PDF
    Background: Coronavirus disease 19 (COVID-19) is regarded as an independent risk factor for acute ischemic stroke (AIS) due to the induction of endothelial dysfunction, coagulopathy, cytokine storm, and plaque instability. Method: In this retrospective cohort study, a total of 42 COVID-19 patients with type 2 diabetes mellitus (T2DM) who presented with AIS within 1 week of displaying COVID-19 symptoms were recruited. According to the current anti-DM pharmacotherapy, patients were divided into two groups: a Metformin group of T2DM patients with COVID-19 and AIS on metformin therapy (850 mg, 3 times daily (n = 22), and a Non-metformin group of T2DM patients with COVID-19 and AIS under another anti-DM pharmacotherapy like glibenclamide and pioglitazone (n = 20). Anthropometric, biochemical, and radiological data were evaluated. Results: Ferritin serum level was lower in metformin-treated patients compared to non-metformin treated patients (365.93 ± 17.41 vs. 475.92 ± 22.78 ng/mL, p = 0.0001). CRP, LDH, and D-dimer serum levels were also lowered in metformin-treated patients compared to non-metformin treated patients (p = 0.0001). In addition, lung CT scan scores of COVID-19 patients was 30.62 ± 10.64 for metformin and 36.31 ± 5.03 for non-metformin treated patients. Conclusion: Metformin therapy in T2DM patients was linked to a lower risk of AIS during COVID-19. Further studies are needed to observe the link between AIS in COVID-19 diabetic patients and metformin therapy.NC-M acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017). This work was supported by Taif University Researchers Supporting Program (project number: TURSP-2020/93), Taif University, Saudi Arabia

    Case Report: Hyperbilirubinemia in Gilbert Syndrome Attenuates Covid-19-Induced Metabolic Disturbances

    Get PDF
    Gilbert syndrome (GS) is a liver disorder characterized by non-hemolytic unconjugated hyperbilirubinemia. On the other hand, Coronavirus disease 2019 (Covid-19) is a recent viral infectious disease presented as clusters of pneumonia, triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Little is known on the association between SARS-CoV-2 and GS, despite different studies have recently stated a link between hyperbilirubinemia and SARS-CoV-2 severity. In this case-report study we described a 47-year-old man, a known case of GS since the age of 4, presented to the emergency department with fever (39.8°C), dry cough, dyspnea, headache, myalgia, sweating and jaundice diagnosed with Covid-19-induced pneumonia. Interestingly, GS patient exhibited a rapid clinical recovery and short hospital stay compared to other SARS-CoV-2 positive patient, seeming that hyperbilirubinemia may exert a protective effect of against Covid-19 induced-cardiometabolic disturbances. Data obtained here underlines that the higher resistance against Covid-19 evidenced by the GS patient seems to be due to the antioxidant, anti-inflammatory, and antiviral effects of unconjugated bilirubin.To all members in College of Medicine, Al-Mustansiyria University. NC-M acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    Pleiotropic Effects of Tetracyclines in the Management of COVID-19: Emerging Perspectives

    Get PDF
    Coronavirus disease 2019 (COVID-19) is a global infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Approximately 15% of severe cases require an intensive care unit (ICU) admission and mechanical ventilation due to development of acute respiratory distress syndrome (ARDS). Tetracyclines (TCs) are a group of bacteriostatic antibiotics, like tetracycline, minocycline, and doxycycline, effective against aerobic and anaerobic bacteria as well as Gram-positive and Gram-negative bacteria. Based on available evidences, TCs may be effective against coronaviruses and thus useful to treat COVID-19. Thus, this review aims to provide a brief overview on the uses of TCs for COVID-19 management. SARS-CoV-2 and other coronaviruses depend mainly on the matrix metalloproteinases (MMPs) for their proliferation, cell adhesion, and infiltration. The anti-inflammatory mechanisms of TCs are linked to different pathways. Briefly, TCs inhibit mitochondrial cytochrome c and caspase pathway with improvement of lymphopenia in early COVID-19. Specifically, minocycline is effective in reducing COVID-19–related complications, through attenuation of cytokine storm as apparent by reduction of interleukin (IL)-6, IL-1, and tumor necrosis factor (TNF)-a. Different clinical trials recommend the replacement of azithromycin by minocycline in the management of COVID-19 patients at high risk due to two main reasons: 1) minocycline does not prolong the QT interval and even inhibits ischemia-induced arrhythmia; 2) minocycline displays synergistic effect with chloroquine against SARS-CoV-2. Taken together, the data presented here show that TCs, mainly doxycycline or minocycline, may be potential partners in COVID-19 management, derived pneumonia, and related complications, such as acute lung injury (ALI) and ARDS.The authors thank all members of the College of Medicine, Al-Mustansiyria University. NC-M acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    The Looming Effects of Estrogen in Covid-19: A Rocky Rollout

    Get PDF
    In the face of the Covid-19 pandemic, an intensive number of studies have been performed to understand in a deeper way the mechanisms behind better or worse clinical outcomes. Epidemiologically, men subjects are more prone to severe acute respiratory syndrome-coronavirus type 2 (SARS-CoV-2) infections than women, with a similar scenario being also stated to the previous coronavirus diseases, namely, SARS-CoV in 2003 and Middle East Respiratory Syndrome coronavirus diseases (MERS-CoV) in 2012. In addition, and despite that aging is regarded as an independent risk factor for the severe form of the disease, even so, women protection is evident. In this way, it has been expected that sex hormones are the main determinant factors in gender differences, with the immunomodulatory effects of estrogen in different viral infections, chiefly in Covid-19, attracting more attention as it might explain the case-fatality rate and predisposition of men for Covid-19 severity. Here, we aim to provide a mini-review and an overview on the protective effects of estrogen in Covid-19. Different search strategies were performed including Scopus, Web of Science, Medline, Pubmed, and Google Scholar database to find relative studies. Findings of the present study illustrated that women have a powerful immunomodulating effect against Covid-19 through the effect of estrogen. This study illustrates that estrogens have noteworthy anti-inflammatory and immuno-modulatory effects in Covid-19. Also, estrogen hormone reduces SARS-CoV-2 infectivity through modulation of pro-inflammatory signaling pathways. This study highlighted the potential protective effect of estrogen against Covid-19 and recommended for future clinical trial and prospective studies to elucidate and confirm this protective effect.NC-M acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017). HA-k acknowledges medical staff members of Al-Shiffa Medical Center, Baghdad, Iraq for their participations

    Selection criteria of Zebrafish male donors for sperm cryopreservation

    Get PDF
    Selection criteria for sperm cryopreservation are highly relevant in zebrafish since sperm quality is particularly variable in this species. Successful cryopreservation depends on high-quality sperm, which can only be ensured by the selection of breeders. Consequently, male selection and management are a priority to improve cryopreservation, and therefore, this study aimed to characterize optimal age and sperm collection frequency in zebrafish. For this purpose, males from wild type (AB) and from a transgenic line [Tg(runx2:eGFP)] were sampled at 6, 8, 12, and 14 months. For each age, sperm were collected at time 0 followed by samplings at 2, 7, and 14 days of rest. Sperm quality was assessed according to motility and membrane viability parameters. Quality assessment showed that Tg(runx2:eGFP) displayed significantly higher motility than AB and younger males showed higher motility in both lines. Sperm collection frequency affected membrane viability. While AB fish recovered sperm viability after 14 days of rest, Tg(runx2:eGFP) could not recover. Consequently, it may be important to study the sperm quality of each zebrafish line before sperm cryopreservation. Taking into consideration the results achieved in both lines, sperm collection should be performed between 6 and 8 months of age with a minimum collection interval of 14 days.N730984, EBB-EAPA_501/2016, PEst-C/MAR/LA0015/2011info:eu-repo/semantics/publishedVersio

    Management of SARS-CoV-2 Infection: Key Focus in Macrolides Efficacy for COVID-19

    Get PDF
    Macrolides (e.g., erythromycin, fidaxomicin, clarithromycin, and azithromycin) are a class of bacteriostatic antibiotics commonly employed in medicine against various gram-positive and atypical bacterial species mostly related to respiratory tract infections, besides they possess anti-inflammatory and immunomodulatory effects. Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). It was first detected in Wuhan, Hubei, China, in December 2019 and resulted in a continuing pandemic. Macrolides have been extensively researched as broad adjunctive therapy for COVID-19 due to its immunostimulant abilities. Among such class of drugs, azithromycin is described as azalide and is well-known for its ability to decrease the production of pro-inflammatory cytokines, including matrix metalloproteinases, tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8. In fact, a report recently published highlighted the effectiveness of combining azithromycin and hydroxychloroquine for COVID-19 treatment. Indeed, it has been underlined that azithromycin quickly prevents SARS-CoV-2 infection by raising the levels of both interferons and interferon-stimulated proteins at the same time which reduces the virus replication and release. In this sense, the current review aims to evaluate the applications of macrolides for the treatment of COVID-19.NC-M acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    Agronomic biofortification of cowpea with selenium: effects of selenate and selenite applications on selenium and phytate concentrations in seeds

    Get PDF
    BACKGROUNDSelenium (Se) is a nutrient for animals and humans, and is considered beneficial to higher plants. Selenium concentrations are low in most soils, which can result in a lack of Se in plants, and consequently in human diets. Phytic acid (PA) is the main storage form of phosphorus in seeds, and it is able to form insoluble complexes with essential minerals in the monogastric gut. This study aimed to establish optimal levels of Se application to cowpea, with the aim of increasing Se concentrations. The efficiency of agronomic biofortification was evaluated by the application of seven levels of Se (0, 2.5, 5, 10, 20, 40, and 60 g ha−1) from two sources (selenate and selenite) to the soil under field conditions in 2016 and 2017.RESULTSApplication of Se as selenate led to greater plant Se concentrations than application as selenite in both leaves and grains. Assuming human cowpea consumption of 54.2 g day−1, Se application of 20 g ha−1 in 2016 or 10 g ha−1 in 2017 as selenate would have provided a suitable daily intake of Se (between 20 and 55 μg day−1) for humans. Phytic acid showed no direct response to Se application.CONCLUSIONSelenate provides greater phytoavailability than selenite. The application of 10 g Se ha−1 of selenate to cowpea plants could provide sufficient seed Se to increase daily human intake by 13–14 μg d−1. © 2019 Society of Chemical Industr
    corecore