20,642 research outputs found

    Structural studies of mesoporous ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} mixed oxides for catalytical applications

    Full text link
    In this work the synthesis of ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} were developed, based on the process to form ordered mesoporous materials such as SBA-15 silica. The triblock copolymer Pluronic P-123 was used as template, aiming to obtain crystalline single phase walls and larger specific surface area, for future applications in catalysis. SAXS and XRD results showed a relationship between ordered pores and the material crystallization. 90% of CeO2_{2} leaded to single phase homogeneous ceria-zirconia solid solution of cubic fluorite structure (Fm3ˉ\bar{3}m). The SiO2_{2} addition improved structural and textural properties as well as the reduction behavior at lower temperatures, investigated by XANES measurements under H2_{2} atmosphere

    New results for the t-J model in ladders: Changes in the spin liquid state with applied magnetic field. Implications for the cuprates

    Full text link
    Exact Diagonalization calculations are presented for the t-J model in the presence of a uniform magnetic field. Results for 2xL ladders (L=8,10,12) and 4x4 square clusters with 1 and 2 holes indicate that the diamagnetic response to a perpendicular magnetic field tends to induce a spin liquid state in the spin background. The zero-field spin liquid state of a two-leg ladder is reinforced by the magnetic field: a considerable increase of rung antiferromagnetic correlations is observed for J/t up to 0.6, for 1 and 2 holes. Pair-breaking is also clearly observed in the ladders and seems to be associated in part with changes promoted by the field in the spin correlations around the zero-field pair. In the 4x4 cluster, the numerical results seem to indicate that the field-induced spin liquid state competes with the zero-field antiferromagnetic short-range-order, the spin liquid state being favored by higher doping and smaller values of J/t. It is interesting to note that the field-effect can also be observed in a 2x2 plaquette with 1 and 2 holes. This opens up the possibility of gaining a qualitative understanding of the effect.Comment: 16 pages, 7 figures, latex New results adde

    Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    Full text link
    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in Weinberg-Salam theory, particularly in the context of the Electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the Electroweak Z string, through the ``bag'' phenomenon described by Watkins and Vachaspati. (Recently cosmic strings have climbed back into interest due to new evidence). Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like `gravitational' effect of this non-propagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the νR\nu_R is non-zero in the physical vacuum.Comment: 42 page

    Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Full text link
    The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and to search for hints of new physics. We have determined T_CMB(z), with a precision up to 3%, for a subsample (104 clusters) of the Planck SZ cluster catalog, at redshift in the range 0.01-- 0.94, using measurements of the spectrum of the Sunyaev Zel'dovich effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T_CMB(z) at cluster redshift relies on the use of SZ intensity change, Delta I_SZ(nu), at different frequencies, and on a Monte-Carlo Markov Chain approach. By applying this method to the sample of 104 clusters, we limit possible deviations of the form T_CMB(z)=T_0(1+z)^(1-beta) to be beta= 0.022 +/- 0.018, at 1 sigma uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results we get beta=0.016+/-0.012.Comment: submitted to JCAP, 21 pages, 8 figure

    Differential mesenteric fat deposition in bovines fed on silage or concentrate is independent of glycerol membrane permeability

    Get PDF
    © The Animal Consortium 2011In the meat industry, the manipulation of fat deposition in cattle is of pivotal importance to improve production efficiency, carcass composition and ultimately meat quality. There is an increasing interest in the identification of key factors and molecular mechanisms responsible for the development of specific fat depots. This study aimed at elucidating the influence of breed and diet on adipose tissue membrane permeability and fluidity and their interplay on fat deposition in bovines. Two Portuguese autochthonous breeds, Alentejana and Barrosã, recognized as late- and early-maturing breeds, respectively, were chosen to examine the effects of breed and diet on fat deposition and on adipose membrane composition and permeability. Twenty-four male bovines from these breeds were fed on silage-based or concentrate-based diets for 11 months. Animals were slaughtered to determine their live slaughter and hot carcass weights, as well as weights of subcutaneous and visceral adipose depots. Mesenteric fat depots were excised and used to isolate adipocyte membrane vesicles where cholesterol content, fatty acid profile as well as permeability and fluidity were determined. Total accumulation of neither subcutaneous nor visceral fat was influenced by breed. In contrast, mesenteric and omental fat depots weights were higher in concentrate-fed bulls relative to silage-fed animals. Membrane fluidity and permeability to water and glycerol in mesenteric adipose tissue were found to be independent of breed and diet. Moreover, the deposition of cholesterol and unsaturated fatty acids, which may influence membrane properties, were unchanged among experimental groups. Adipose membrane lipids from the mesenteric fat depot of ruminants were rich in saturated fatty acids, and unaffected by polyunsaturated fatty acids dietary levels. Our results provide evidence against the involvement of cellular membrane permeability to glycerol on fat accumulation in mesenteric fat tissue of concentrate-fed bovines, which is consistent with the unchanged membrane lipid profile found among experimental groups.This study was supported by Fundação para a Ciência e a Tecnologia (FCT) through grant PTDC/CVT/2006/66114 and individual fellowships to Ana P. Martins (SFRH/BD/2009/65046), Ana S. H. Costa (SFRH/BD/2009/61068) and Susana V. Martins (SFRH/BPD/2009/63019). Paula A. Lopes is a researcher from the program ‘‘Ciência 2008’’ from FC

    Discrete Time Evolution and Energy Nonconservation in Noncommutative Physics

    Get PDF
    Time-space noncommutativity leads to quantisation of time and energy nonconservation when time is conjugate to a compact spatial direction like a circle. In this context energy is conserved only modulo some fixed unit. Such a possibility arises for example in theories with a compact extra dimension with which time does not commute. The above results suggest striking phenomenological consequences in extra dimensional theories and elsewhere. In this paper we develop scattering theory for discrete time translations. It enables the calculation of transition probabilities for energy nonconserving processes and has a central role both in formal theory and phenomenology. We can also consider space-space noncommutativity where one of the spatial directions is a circle. That leads to the quantisation of the remaining spatial direction and conservation of momentum in that direction only modulo some fixed unit, as a simple adaptation of the results in this paper shows.Comment: 17 pages, LaTex; minor correction

    Qualitative understanding of the sign of t' asymmetry in the extended t-J Model and relevance for pairing properties

    Full text link
    Numerical calculations illustrate the effect of the sign of the next nearest-neighbor hopping term t' on the 2-hole properties of the t-t'-J model. Working mainly on 2-leg ladders, in the -1.0 < t'/t < 1.0 regime, it is shown that introducing t' in the t-J model is equivalent to effectively renormalizing J, namely t' negative (positive) is equivalent to an effective t-J model with smaller (bigger) J. This effect is present even at the level of a 2x2 plaquette toy model, and was observed also in calculations on small square clusters. Analyzing the transition probabilities of a hole-pair in the plaquette toy model, it is argued that the coherent propagation of such hole-pair is enhanced by a constructive interference between both t and t' for t'>0. This interference is destructive for t'<0.Comment: 5 pages, 4 figures, to appear in PRB as a Rapid Communicatio
    corecore