1,363 research outputs found

    Nuts and Bolts : Microfluidics for the Production of Biomaterials

    Get PDF
    Nanotechnology holds the promise of bringing revolutionary therapeutic strategies into the clinic. However, an enormous fraction of the currently proposed nanotechnology-based therapies suffers from lack of reproducibility, complexity, high costs, and scale-up-related issues. For these reasons, the research community is moving toward the miniaturization of biomaterials and fabrication methods. Customizable microfluidic-based products have gained tremendous relevance in the development of biomedical technologies. This review provides an overview of different materials that can be used for the fabrication of microfluidic devices, as well as the other parameters influencing the production of biomaterials and biosensors. Moreover, several advanced microfluidic-based technologies that are designed to overcome the current challenges of cancer, immunotherapy, and diabetes therapy, among others are described. Then, the pros and cons of microfluidics as alternative to conventional preparation methods, and the challenges of translating this technique to an industrial context are highlighted. Overall, microfluidic technologies and their accessibility to the research community offer a set of exciting opportunities to bridge the development of innovative therapies and their commercialization in the foreseeable future.Peer reviewe

    Genetic and virulence characterization of colistin-resistant and colistin-sensitive A. baumannii clinical isolates.

    Get PDF
    Treatment of infections caused by A. baumannii is becoming a challenge due to the ability to develop multidrug-resistance, virulence, and high mortality. We described the colistin resistance and virulence genes present in sixA. baumannii clinical isolates using WGS, expression by qPCR, and virulence in the Galleria mellonella model. The colistin-resistant isolates were assigned as ST233 and the colistin-susceptible isolates as ST236 and ST407. The colistin-resistant isolates contained mutations within PmrA/PmrB, and the pmrA showed up-regulation in all of them. Only one colistin-resistant isolate indicating virulence in G. mellonella. This particular isolate belonged to a different clone, and it was the only isolate that presented non-synonymous mutations in pmrB. Colistinresistance in A. baumannii isolates seems to be caused by up-regulation of pmrA gene. Only one isolate appeared to be virulent in the G. mellonella model. This finding indicating low virulence in isolates belonging to emerging clones circulating in our hospital

    Dual-Peptide Functionalized Acetalated Dextran-Based Nanoparticles for Sequential Targeting of Macrophages during Myocardial Infarction

    Get PDF
    The advent of nanomedicine has recently started to innovate the treatment of cardiovascular diseases, in particular myocardial infarction. Although current approaches are very promising, there is still an urgent need for advanced targeting strategies. In this work, the exploitation of macrophage recruitment is proposed as a novel and synergistic approach to improve the addressability of the infarcted myocardium achieved by current peptide-based heart targeting strategies. For this purpose, an acetalated dextran-based nanosystem is designed and successfully functionalized with two different peptides, atrial natriuretic peptide (ANP) and linTT1, which target, respectively, cardiac cells and macrophages associated with atherosclerotic plaques. The biocompatibility of the nanocarrier is screened on both macrophage cell lines and primary macrophages, showing high safety, in particular after functionalization of the nanoparticles' surface. Furthermore, the system shows higher association versus uptake ratio towards M2-like macrophages (approximately 2-fold and 6-fold increase in murine and human primary M2-like macrophages, respectively, compared to M1-like). Overall, the results demonstrate that the nanosystem has potential to exploit the "hitchhike" effect on M2-like macrophages and potentially improve, in a dual targeting strategy, the ability of the ANP peptide to target infarcted heart.Peer reviewe

    Effects of Repeated Stress on Distal Airway Inflammation, Remodeling and Mechanics in an Animal Model of Chronic Airway Inflammation

    Get PDF
    Background/Aims: Epidemiological studies suggest that stress has an impact on asthmatic exacerbations. We evaluated if repeated stress, induced by forced swimming, modulates lung mechanics, distal airway inflammation and extracellular matrix remodeling in guinea pigs with chronic allergic inflammation. Methods: Guinea pigs were submitted to 7 ovalbumin or saline aerosols (1-5 mg/ml during 4 weeks; OVA and SAL groups). Twenty-four hours after the 4th inhalation, guinea pigs were submitted to the stress protocol 5 times a week during 2 weeks (SAL-S and OVA-S groups). Seventy-two hours after the 7th inhalation, guinea pigs were anesthetized and mechanically ventilated. Resistance and elastance of the respiratory system were obtained at baseline and after ovalbumin challenge. Lungs were removed, and inflammatory and extracellular matrix remodeling of distal airways was assessed by morphometry. Adrenals were removed and weighed. Results: The relative adrenal weight was greater in stressed guinea pigs compared to non-stressed animals (p < 0.001). Repeated stress increased the percent elastance of the respiratory system after antigen challenge and eosinophils and lymphocytes in the OVA-S compared to the OVA group (p < 0.001, p = 0.003 and p < 0.001). Neither collagen nor elastic fiber contents were modified by stress in sensitized animals. Conclusions: In this animal model, repeated stress amplified bronchoconstriction and inflammatory response in distal airways without interfering with extracellular matrix remodeling. Copyright (C) 2011 S. Karger AG, Base

    Artificially Cloaked Viral Nanovaccine for Cancer Immunotherapy

    Get PDF
    Virus-based cancer vaccines are nowadays considered an interesting approach in the field of cancer immunotherapy, despite the observation that the majority of the immune responses they elicit are against the virus and not against the tumor. In contrast, targeting tumor associated antigens is effective, however the identification of these antigens remains challenging. Here, we describe ExtraCRAd, a multi-vaccination strategy focused on an oncolytic virus artificially wrapped with tumor cancer membranes carrying tumor antigens. We demonstrate that ExtraCRAd displays increased infectivity and oncolytic effect in vitro and in vivo. We show that this nanoparticle platform controls the growth of aggressive melanoma and lung tumors in vivo both in preventive and therapeutic setting, creating a highly specific anti-cancer immune response. In conclusion, ExtraCRAd might serve as the next generation of personalized cancer vaccines with enhanced features over standard vaccination regimens, representing an alternative way to target cancer.Peer reviewe

    Antiproteinuric and Hyperkalemic Mechanisms Activated by Dual Versus Single Blockade of the RAS in Renovascular Hypertensive Rats

    Get PDF
    This study aimed to investigate the antiproteinuric and hyperkalemic mechanisms activated by dual renin-angiotensin system (RAS) blockade in renovascular hypertensive rats (2-kidney 1-clip model [2K-1C]). Six weeks after clipping the left renal artery or sham operation (2K), rats were treated with losartan, enalapril, or both drugs for two weeks. We found that 2K-1C rats displayed higher tail-cuff blood pressure (BP), increased non-clipped kidney Ang II concentration, and more pronounced urinary albumin excretion than 2K. BP was decreased by the treatment with either enalapril or losartan, and the combination of both drugs promoted an additional antihypertensive effect in 2K-1C rats. Renal Ang II content and albuminuria were reduced by either enalapril or losartan in monotherapy and restored to control levels by dual RAS blockade. Albuminuria in 2K-1C rats was accompanied by downregulation of the glomerular slit protein podocin, reduction of the endocytic receptors megalin and cubilin, and a marked decrease in the expression of the ClC-5 chloride channel, compared to 2K animals. Treatment with losartan and enalapril in monotherapy or combination increased the expression of podocin, cubilin, and ClC-5. However, only the combined therapy normalized podocin, cubilin, and ClC-5 protein abundance in the non-clipped kidney of 2K-1C rats. Renovascular hypertensive 2K-1C rats had a lower concentration of plasma potassium compared to 2K rats. Single RAS blockade normalized potassium plasma concentration, whereas 2K-1C rats treated with dual RAS blockade exhibited hyperkalemia. Hypokalemia in 2K-1C rats was accompanied by an increase in the cleaved activated forms of α-ENaC and γ-ENaC and the expression of β-ENaC. Combined RAS blockade but not monotherapy significantly reduced the expression of these ENaC subunits in 2K-1C rats. Indeed, double RAS blockade reduced the abundance of cleaved-α-ENaC to levels lower than those of 2K rats. Collectively, these results demonstrate that the antiproteinuric effect of dual RAS blockade in 2K-1C rats is associated with the restored abundance of podocin and cubilin, and ClC-5. Moreover, double RAS blockade-induced hyperkalemia may be due, at least partially, to an exaggerated downregulation of cleaved α-ENaC in the non-clipped kidney of renovascular hypertensive rats

    Delayed Reperfusion—Coronary Artery Reperfusion Close to Complete Myocardial Necrosis Benefits Remote Myocardium and Is Enhanced by Exercise

    Get PDF
    The present study aimed to analyze the effects of reperfusion of a distant coronary artery on cardiac function, the ultrastructure, and the molecular environment of the remote myocardium immediately after the completion of myocardial regional necrosis: delayed reperfusion (DR). Additionally, the effects of prior exercise on the outcomes of DR were investigated. Female rats with permanent occlusion or delayed reperfusion were randomly assigned to an exercise (swimming, 1 h/day, 5 days/week for 8 weeks) or sedentary protocol. Thus, the study included the following four groups: sedentary permanent occlusion, exercise permanent occlusion, sedentary delayed reperfusion, and exercise delayed reperfusion. The descending coronary artery was occluded for 1 h. Reperfusion was confirmed by contrast echocardiography, and the rats were observed for 4 weeks. Permanent occlusion and DR caused similar myocardial infarction sizes among the four groups. Interestingly, exercise significantly decreased the mortality rate. Delayed reperfusion resulted in significant benefits, including enhanced hemodynamics and papillary muscle contraction, as well as reduced apoptosis and collagen content. Protein calcium kinetics did not change. Meanwhile, developed tension and the Frank–Starling mechanism were enhanced, suggesting that calcium sensitivity was intensified in myofilaments. Remarkable remote myocardial benefits occurred after distant DR, and prior exercise intensified cardiac recovery. Our findings provide valuable information about DR. Our data might explain the better clinical outcomes in recent studies showing that late reperfusion could improve heart failure in patients with myocardial infarction. In conclusion, DR has remote myocardial benefits, including inotropism enhancement, pulmonary congestion reduction, and collagen and apoptosis attenuation, which are enhanced by prior exercise

    IFN-gamma Plays a Unique Role in Protection against Low Virulent Trypanosoma cruzi Strain

    Get PDF
    Background: T. cruzi strains have been divided into six discrete typing units (DTUs) according to their genetic background. These groups are designated T. cruzi I to VI. In this context, amastigotes from G strain (T. cruzi I) are highly infective in vitro and show no parasitemia in vivo. Here we aimed to understand why amastigotes from G strain are highly infective in vitro and do not contribute for a patent in vivo infection. Methodology/Principal Findings: Our in vitro studies demonstrated the first evidence that IFN-gamma would be associated to the low virulence of G strain in vivo. After intraperitoneal amastigotes inoculation in wild-type and knockout mice for TNF-alpha, Nod2, Myd88, iNOS, IL-12p40, IL-18, CD4, CD8 and IFN-gamma we found that the latter is crucial for controlling infection by G strain amastigotes. Conclusions/Significance: Our results showed that amastigotes from G strain are highly infective in vitro but did not contribute for a patent infection in vivo due to its susceptibility to IFN-gamma production by host immune cells. These data are useful to understand the mechanisms underlying the contrasting behavior of different T. cruzi groups for in vitro and in vivo infection.CAPES [3038.005295/2011-40]CAPESFAPEMIGFAPEMIG [APQ-00621-11]CNPqCNPqFAPESPFAPESP [10-50959-4
    • …
    corecore