20,652 research outputs found

    A polarised infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots

    Get PDF
    In this article we summarise and discuss the infrared, radio, and X-ray emission from the supermassive black hole in the Galactic Centre, SgrA*. We include new results from near-infrared polarimetric imaging observations obtained on May 31st, 2006. In that night, a strong flare in Ks band (2.08 microns) reaching top fluxes of ~16 mJy could be observed. This flare was highly polarised (up to ~40%) and showed clear sub-structure on a time scale of 15 minutes, including a swing in the polarisation angle of about 70 degrees. For the first time we were able to observe both polarised flux and short-time variability, with high significance in the same flare event. This result adds decisive information to the puzzle of the SgrA* activity. The observed polarisation angle during the flare peak is the same as observed in two events in 2004 and 2005. Our observations strongly support the dynamical emission model of a decaying plasma hotspot orbiting SgrA* on a relativistic orbit. The observed polarisation parameters and their variability with time might allow to constrain the orientation of accretion disc and spin axis with respect to the Galaxy.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    Embedded Electricity Quality Analyzer

    Get PDF
    Electric installations are traditionally designed for supplying an electric service. The only one associated instrument is the energy meter that is introduced only for measure the total amount of energy that will be charged to the user. However, the exploration of parameters associated with electricity can provide several advantages such the household performance devices, legal issues and later one a more sustainable way to use the electricity energy. This work presents the principle of a low cost energy analyzer that will be part of an electric home installation. Electric parameters are measured and then transmitted via Wi-Fi to a domestic server where all data are stored. This data exploitation can be later one used for several purposes, since electric efficiency to electric charges prediction.info:eu-repo/semantics/publishedVersio

    On the nature of the fast moving star S2 in the Galactic Center

    Full text link
    We analyze the properties of the star S2 orbiting the supermassive black hole at the center of the Galaxy. A high quality SINFONI H and K band spectrum obtained from coadding 23.5 hours of observation between 2004 and 2007 reveals that S2 is an early B dwarf (B0-2.5V). Using model atmospheres, we constrain its stellar and wind properties. We show that S2 is a genuine massive star, and not the core of a stripped giant star as sometimes speculated to resolve the problem of star formation so close to the supermassive black hole. We give an upper limit on its mass loss rate, and show that it is He enriched, possibly because of the presence of a magnetic field.Comment: 4 pages, 5 figures, ApJ letters accepte

    Numerical Simulation of Magnetic Interactions in Polycrystalline YFeO3

    Full text link
    The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (H_E = 5590 kOe), anisotropy field (H_A = 0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field (H_D = 149 kOe) are in good agreement with previous reports on this system.Comment: 26 pages, 9 figure

    Massive binaries in the vicinity of Sgr A*

    Full text link
    A long-term spectroscopic and photometric survey of the most luminous and massive stars in the vicinity of the super-massive black hole Sgr A* revealed two new binaries; a long-period Ofpe/WN9 binary, GCIRS 16NE, with a modest eccentricity of 0.3 and a period of 224 days and an eclipsing Wolf-Rayet binary with a period of 2.3 days. Together with the already identified binary GCIRS 16SW, there are now three confirmed OB/WR binaries in the inner 0.2\,pc of the Galactic Center. Using radial velocity change upper limits, we were able to constrain the spectroscopic binary fraction in the Galactic Center to FSB=0.270.19+0.29F_{\rm SB}=0.27^{+0.29}_{-0.19} at a confidence level of 95%, a massive binary fraction similar to that observed in dense clusters. The fraction of eclipsing binaries with photometric amplitudes Δm>0.4\Delta m>0.4 is FEBGC=3±2F^{\rm GC}_{\rm EB}=3\pm2%, which is consistent with local OB star clusters (FEB=1F_{\rm EB}=1%). Overall the Galactic Center binary fraction seems to be close to the binary fraction in comparable young clusters.Comment: 5 figures, submitted to Ap

    GCIRS16SW: a massive eclipsing binary in the Galactic Center

    Get PDF
    We report on the spectroscopic monitoring of GCIRS16SW, an Ofpe/WN9 star and LBV candidate in the central parsec of the Galaxy. SINFONI observations show strong daily spectroscopic changes in the K band. Radial velocities are derived from the HeI 2.112 um line complex and vary regularly with a period of 19.45 days, indicating that the star is most likely an eclipsing binary. Under various assumptions, we are able to derive a mass of ~ 50 Msun for each component.Comment: 4 pages, 4 figures, ApJ Letters accepte

    Surface abundances of ON stars

    Get PDF
    Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient, or when mass transfer in binary systems happens, chemically processed material is observed at the surface of O and B stars. ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle or not is not known. Our goal is to answer this question. We perform a spectroscopic analysis of a sample of ON stars with atmosphere models. We determine the fundamental parameters as well as the He, C, N, and O surface abundances. We also measure the projected rotational velocities. We compare the properties of the ON stars to those of normal O stars. We show that ON stars are usually helium-rich. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Hence, mass transfer is not a simple explanation for the observed chemical properties. We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present.Comment: 18 pages, 10 figures (+ appendix). A&A accepte
    corecore