314 research outputs found

    Optical Current Sensors for High Power Systems: A Review

    Get PDF
    The intrinsic advantages of optical sensor technology are very appealing for high voltage applications and can become a valuable asset in a new generation of smart grids. In this paper the authors present a review of optical sensors technologies for electrical current metering in high voltage applications. A brief historical overview is given together with a more detailed focus on recent developments. Technologies addressed include all fiber sensors, bulk magneto-optical sensors, piezoelectric transducers, magnetic force sensors and hybrid sensors. The physical principles and main advantages and disadvantages are discussed. Configurations and strategies to overcome common problems, such as interference from external currents and magnetic fields induced linear birefringence and others are discussed. The state-of-the-art is presented including commercial available systems.info:eu-repo/semantics/publishedVersio

    Metagenomics in Polluted Aquatic Environments

    Get PDF
    Metagenomics is defined as the culture-independent genomic analysis of biological assemblages providing access to the whole set of genes and genomes from a sample. It encompasses a variety of techniques that are based on (i) total DNA extraction from samples followed by PCR amplification of specific genes, (ii) library construction or amplification and sequencing of the whole genetic material. These methodologies have successfully been applied in studies of composition, dynamics, and functions of microbial communities in a variety of ecosystems including those subjected to anthropogenic modifications (Gilbert & Dupont, 2011). Culture independent methods allow the analysis of a set of metabolic genes from microbial communities, which can be used to determine how environmental conditions such as pollution can shape community composition and the diversity of genes associated with biogeochemical cycles such as those of carbon, nitrogen, and phosphorus (Singh et al., 2009). This approach is also useful for the discovery of novel environmental microorganisms and genes, with important applications for biotechnology, medicine, and bioremediation (Cardoso et al., 2011). This applicability has resulted in a recent sharp increase in studies focusing in the metagenomic analysis of polluted sites. Their aim is to characterize microbial communities from a diverse set of environments such as freshwater, marine sediments, open ocean, pelagic ecosystems, soil, and host-associated communities. An example of these initiatives is the Global Ocean Sampling Expedition (GOS), which assessed the genetic diversity of marine microbial communities around the Earth. Since 2003, an enormous amount of data has been generated by GOS helping scientists to reveal the microbial diversity and also allowing them to better understand microbial phylogeny and ecology (Gilbert & Dupont, 2011)

    POTENTIAL OF MULTISPECTRAL IMAGES TAKEN BY SENSORS EMBEDDED IN UAVS FOR MONITORING THE COFFEE CROP IRRIGATION

    Get PDF
    Leaf Water Potential (LWP) is an indicator widely used to understand water relations in a coffee tree. Monitoring water potential is a challenge for remote sensing using low-cost multispectral cameras, with images taken by remotely piloted aircraft. The objective of this work was to evaluate the potential of a low-cost camera to discriminate different water treatments in the coffee tree. In addition, the accuracy of models to estimate LWP in the coffee crop was evaluated. The results showed that the NDVI (Normalized Difference Vegetation Index) vegetation index was able to discriminate 61.6 % more plots in a drought regime than the Near-InfraRed (NIR) band in the rainfall regime. For LWP, the architecture that presented the best performance in the detection of water stress was for the first flight (SMOreg algorithm using as predictor variables all bands, Red, Green, and NIR, and the NDVI vegetation index) with RMSE value of 0.1880 and RMSE% of 34.18. For the second flight (Random Tree algorithm, using as predictor variables all bands and NDVI) with RMSE (0.0520) and RMSE% (32.00) values

    Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus

    Get PDF
    Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N2. This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo–Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation

    Gut Bacterial Communities in the Giant Land Snail Achatina fulica and Their Modification by Sugarcane-Based Diet

    Get PDF
    The invasive land snail Achatina fulica is one of the most damaging agricultural pests worldwide representing a potentially serious threat to natural ecosystems and human health. This species is known to carry parasites and harbors a dense and metabolically active microbial community; however, little is known about its diversity and composition. Here, we assessed for the first time the complexity of bacterial communities occurring in the digestive tracts of field-collected snails (FC) by using culture-independent molecular analysis. Crop and intestinal bacteria in FC were then compared to those from groups of snails that were reared in the laboratory (RL) on a sugarcane-based diet. Most of the sequences recovered were novel and related to those reported for herbivorous gut. Changes in the relative abundance of Bacteroidetes and Firmicutes were observed when the snails were fed a high-sugar diet, suggesting that the snail gut microbiota can influence the energy balance equation. Furthermore, this study represents a first step in gaining a better understanding of land snail gut microbiota and shows that this is a complex holobiont system containing diverse, abundant and active microbial communities

    Environmental Shaping of Sponge Associated Archaeal Communities

    Get PDF
    Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood.We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA) gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA) generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum.The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition of their associated archaeal communities, thereby improving their fitness in impacted environments

    Reduction in Local Ozone Levels in Urban São Paulo Due to a Shift from Ethanol to Gasoline Use

    Get PDF
    It has been proposed that lower NOx emission fuels such as ethanol can mitigate air pollution from vehicles burning oil-based hydrocarbons. Yet, existing modeling and laboratory studies, even those seeking to simulate the same environment, vary in their predictions of how gasoline/ethanol blends affect atmospheric pollutant concentrations, including ozone. Importantly, ambient concentrations have not been evaluated during an actual – as opposed to hypothetical – shift in fuel mix in a real-world environment. Here, we report the first such study, for the subtropical megacity of São Paulo, Brazil. We combine detailed street-hour level data on regulated pollutant concentrations, meteorology, and traffic with fuel shares from a consumer demand model to compare concentrations across subsamples that differ only in the fuel mix but are otherwise similar in meteorology, anthropogenic activity, and biogenic emissions. As the gasoline share of the bi-fuel light-duty vehicle fleet rose by 62 percentage points, we estimate a robust and statistically significant reduction of about 20% in ozone concentrations, and less precise increases in NO and CO concentrations. We propose that our “model-free” analysis potentially accounts for the interaction between anthropogenic and biogenic emissions and caution that successful strategies against ozone pollution require knowledge of the local chemistry and analysis beyond the presently monitored pollutants, most notably fine particles

    Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud

    Get PDF
    A deep survey of the Large Magellanic Cloud at ∼0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over ∼2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles
    corecore