141 research outputs found
Structured Multi-Level Feature Interaction Identification
This is a conference paper.Features are an established means of adding non-geometric information and extra geometric semantics to conventional
CAD systems. It has been already realised that although feature-based modelling is necessary for the next generation of
integrated design and manufacturing systems, inherent feature interactions pose a difficulty in representing and
manipulating geometric design. This paper presents a structured multi-level geometric feature interaction classification
scheme implemented within a Design-by Feature (DbF) system for representation validation analysis. Various feature
interaction definitions and classification methods are first surveyed. The elements and the tests used for the
identification process are presented. The classification encompasses existing feature interference cases found in the
literature, uses a clear structure for the classification and, is applied at three different levels
Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies
Is drinking water a risk factor for endemic cryptosporidiosis? A case-control study in the immunocompetent general population of the San Francisco Bay Area
BACKGROUND: Cryptosporidiosis, caused by Cryptosporidium, is an enteric illness that has received much attention as an infection of immunocompromised persons as well as in community outbreaks (frequently waterborne). There are, however, no studies of the risk factors for sporadic community-acquired cryptosporidiosis in the immunocompetent US population. We undertook a case-control study in the San Francisco Bay Area as part of a national study sponsored by the Centers for Disease Control and Prevention to ascertain the major routes of transmission for endemic cryptosporidiosis, with an emphasis on evaluating risk from drinking water. METHODS: Cases were recruited from a population-based, active surveillance system and age-matched controls were recruited using sequential random-digit dialing. Cases (n = 26) and controls (n = 62) were interviewed by telephone using a standardized questionnaire that included information about the following exposures: drinking water, recreational water, food items, travel, animal contact, and person-to-person fecal contact, and (for adults) sexual practices. RESULTS: In multivariate conditional logistic regression analyses no significant association with drinking water was detected. The major risk factor for cryptosporidiosis in the San Francisco Bay Area was travel to another country (matched odds ratio [95% confidence interval]: 24.1 [2.6, 220]). CONCLUSION: The results of this study do not support the hypothesis that drinking water is an independent risk factor for cryptosporidiosis among the immunocompetent population. These findings should be used to design larger studies of endemic cryptosporidiosis to elucidate the precise mechanisms of transmission, whether waterborne or other
Immunostaining of thymidylate synthase and p53 for predicting chemoresistance to S-1/cisplatin in gastric cancer
High expression of thymidylate synthase (TS) and inactivation of p53 are allegedly associated with chemoresistance. The authors evaluated TS and p53 expression in gastric cancer treated with neoadjuvant S-1/cisplatin chemotherapy. Paraffin sections of pretreatment biopsy and surgical specimens from 41 gastric cancers were immunostained for TS and p53 protein after appropriate antigen retrieval. Fifty-one cases without neoadjuvant chemotherapy were also studied. In the pretreatment biopsies, high expression of TS was seen in 8% of the histologic responders, in 28% of the nonresponders and in 31% of the controls. High expression of p53 was observed in 56% of the nonresponders, but in 8% of the responders and in 29% of the controls (P<0.01 and P<0.05, respectively). The TS- and/or p53-high phenotype was seen in 76% of the nonresponders and in 54% of the controls, but in 8% of the responders (P<0.0001 and P<0.005, respectively). The data of the surgical specimens were consistent with those of the pretreatment biopsies. These results suggest that immunostaining for TS and p53 protein is useful for pretreatment selection of gastric cancer patients unresponsive to S-1/cisplatin chemotherapy
Identification and Characterization of Nucleolin as a COUP-TFII Coactivator of Retinoic Acid Receptor β Transcription in Breast Cancer Cells
The orphan nuclear receptor COUP-TFII plays an undefined role in breast cancer. Previously we reported lower COUP-TFII expression in tamoxifen/endocrine-resistant versus sensitive breast cancer cell lines. The identification of COUP-TFII-interacting proteins will help to elucidate its mechanism of action as a transcriptional regulator in breast cancer.FLAG-affinity purification and multidimensional protein identification technology (MudPIT) identified nucleolin among the proteins interacting with COUP-TFII in MCF-7 tamoxifen-sensitive breast cancer cells. Interaction of COUP-TFII and nucleolin was confirmed by coimmunoprecipitation of endogenous proteins in MCF-7 and T47D breast cancer cells. In vitro studies revealed that COUP-TFII interacts with the C-terminal arginine-glycine repeat (RGG) domain of nucleolin. Functional interaction between COUP-TFII and nucleolin was indicated by studies showing that siRNA knockdown of nucleolin and an oligonucleotide aptamer that targets nucleolin, AS1411, inhibited endogenous COUP-TFII-stimulated RARB2 expression in MCF-7 and T47D cells. Chromatin immunoprecipitation revealed COUP-TFII occupancy of the RARB2 promoter was increased by all-trans retinoic acid (atRA). RARβ2 regulated gene RRIG1 was increased by atRA and COUP-TFII transfection and inhibited by siCOUP-TFII. Immunohistochemical staining of breast tumor microarrays showed nuclear COUP-TFII and nucleolin staining was correlated in invasive ductal carcinomas. COUP-TFII staining correlated with ERα, SRC-1, AIB1, Pea3, MMP2, and phospho-Src and was reduced with increased tumor grade.Our data indicate that nucleolin plays a coregulatory role in transcriptional regulation of the tumor suppressor RARB2 by COUP-TFII
Abilities to explicitly and implicitly infer intentions from actions in adults with autism spectrum disorder
Previous research suggests that Autism Spectrum Disorder (ASD) might be associated with impairments on implicit but not explicit mentalizing tasks. However, such comparisons are made difficult by the heterogeneity of stimuli and the techniques used to measure mentalizing capabilities. We tested the abilities of 34 individuals (17 with ASD) to derive intentions from others’ actions during both explicit and implicit tasks and tracked their eye-movements. Adults with ASD displayed explicit but not implicit mentalizing deficits. Adults with ASD displayed typical fixation patterns during both implicit and explicit tasks. These results illustrate an explicit mentalizing deficit in adults with ASD, which cannot be attributed to differences in fixation patterns
Translating upwards: linking the neural and social sciences via neuroeconomics
The social and neural sciences share a common interest in understanding
the mechanisms that underlie human behaviour. However, interactions between
neuroscience and social science disciplines remain strikingly narrow and tenuous.
We illustrate the scope and challenges for such interactions using the paradigmatic
example of neuroeconomics. Using quantitative analyses of both its scientific
literature and the social networks in its intellectual community, we show that
neuroeconomics now reflects a true disciplinary integration, such that research
topics and scientific communities with interdisciplinary span exert greater
influence on the field. However, our analyses also reveal key structural and
intellectual challenges in balancing the goals of neuroscience with those of the
social sciences. To address these challenges, we offer a set of prescriptive
recommendations for directing future research in neuroeconomics
Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge
Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA
- …