685 research outputs found

    Measurement-induced quantum operations on multiphoton states

    Full text link
    We investigate how multiphoton quantum states obtained through optical parametric amplification can be manipulated by performing a measurement on a small portion of the output light field. We study in detail how the macroqubit features are modified by varying the amount of extracted information and the strategy adopted at the final measurement stage. At last the obtained results are employed to investigate the possibility of performing a microscopic-macroscopic non-locality test free from auxiliary assumptions.Comment: 13 pages, 13 figure

    Anomalous resilient to decoherence macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    Full text link
    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent an universal set of quantum superpositions resilient to decoherence. We adopt Bures distance as a tool to investigate the persistence ofquantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.Comment: 8 pages, 6 figure

    Anomalous lack of decoherence of the Macroscopic Quantum Superpositions based on phase-covariant Quantum Cloning

    Full text link
    We show that all Macroscopic Quantum Superpositions (MQS) based on phase-covariant quantum cloning are characterized by an anomalous high resilence to the de-coherence processes. The analysis supports the results of recent MQS experiments and leads to conceive a useful conjecture regarding the realization of complex decoherence - free structures for quantum information, such as the quantum computer.Comment: 4 pages, 3 figure

    Amplification of polarization NOON states

    Full text link
    NOON states are path entangled states which can be exploited to enhance phase resolution in interferometric measurements. In the present paper we analyze the quantum states obtained by optical parametric amplification of polarization NOON states. First we study, theoretically and experimentally, the amplification of a 2-photon state by a collinear Quantum Injected Optical Parametric Amplifier (QIOPA). We compared the stimulated emission regime with the spontaneous one, studied by Sciarrino et al. (PRA 77, 012324), finding comparable visibilities between the two cases but an enhancement of the signal in the stimulated case. As a second step, we show that the collinear amplifier cannot be successfully used for amplifying N-photon states with N>2 due to the intrinsic \lambda/4 oscillation pattern of the crystal. To overcome this limitation, we propose to adopt a scheme for the amplification of a generic state based on a non-collinear QIOPA and we show that the state obtained by the amplification process preserves \lambda/N feature and exhibits a high resilience to losses. Furthermore, an asymptotic unity visibility can be obtained when correlation functions with sufficiently high order M are analyzed.Comment: 10 pages, 9 figure

    UPPER TRIASSIC CALCAREOUS ALGAE FROM THE PANTHALASSA OCEAN

    Get PDF
    Upper Triassic calcareous algae, abundant and well-diversified in Tethyan deposits, have rarely been described in rocks of Panthalassan origin. Over the past ten years, several studies were performed on Upper Triassic carbonate deposits of Panthalassan affinity in North America, Japan and Far East Russia, revealing unexpectedly rich and diversified assemblages. The samples were collected from nine localities situated on both sides of the Pacific Ocean. The identified algal assemblage consists of green and red algae, including fourteen dasycladaleans, rare bryopsidaleans, and several rhodophyceans. This paper describes the main algal taxa, including six new species: Holosporella? rossanae Bucur & Del Piero n. sp., Holosporella magna Bucur & Fucelli n. sp., Griphoporella minuta Bucur & Peybernes n. sp., Patruliuspora pacifica Bucur, Del Piero & Peyrotty n. sp., Patruliuspora oregonica Bucur & Rigaud n. sp. and Collarecodium? nezpercae Bucur & Rigaud n. sp. Rivulariacean-like cyanobacteria and thaumatoporellacean algae are also present. The whole Panthalassan algal assemblage comprises both unknown (?endemic) and common taxa of the Tethyan domain. To explain the cosmopolitan distribution of various Upper Triassic benthic organisms scleractinian corals, calcified sponges, foraminifera), a close connection with the Tethys Ocean was hypothesized by different authors. During the Late Triassic, the Tethys was open to the east on the Western Panthalassa but not to the west, suggesting that Triassic calcareous algae were able to efficiently colonize environments that are estimated to be more than 10’000 km apart. An adventitious transport of calcareous algae and/or their spores is proposed to explain this long-range algal dispersal

    Decoherence, Einselection and Classicality of a Macroscopic Quantum Superposition generated by Quantum Cloning

    Full text link
    The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) generated by a quantum injected optical parametric amplifier (QI-OPA) and involving a number of photons in excess of 5x10^4 motivates the present theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on coherent states and NOON states, in the perspective of the comprehensive theory of the subject by W.H.Zurek. In that perspective the concepts of "pointer state", "einselection" are applied to the new scheme.Comment: 10 pages, 7 figure

    Wigner-function theory and decoherence of the quantum-injected optical parametric amplifier

    Full text link
    Recent experimental results demonstrated the generation of a quantum superpositon (MQS), involving a number of photons in excess of 5x10^4, which showed a high resilience to losses. In order to perform a complete analysis on the effects of de-coherence on this multiphoton fields, obtained through the Quantum Injected Optical Parametric Amplifier (QIOPA), we invesigate theoretically the evolution of the Wigner functions associated to these states in lossy conditions. Recognizing the presence of negative regions in the W-representation as an evidence of non-classicality, we focus our analysis on this feature. A close comparison with the MQS based on coherent states allows to identify differences and analogies.Comment: 29 pages, 25 figure

    Mu2e calorimeter readout system

    Get PDF
    The Mu2e electromagnetic calorimeter is made of two disks of un-doped parallelepiped CsI crystals readout by SiPM. There are 674 crystals in one disk and each crystal is readout by an array of two SiPM. The readout electronics is composed of two types of modules: 1) the front-end module hosts the shaping amplifier and the high voltage linear regulator; since one front-end module is interfaced to one SiPM, a total of 2696 modules are needed for the entire calorimeter; 2) a waveform digitizer provides a further level of amplification and digitizes the SiPM signal at the sampling frequency of $200\ \text{M}\text{Hz}with12bitsADCresolution;sinceoneboarddigitizesthedatareceivedfrom20SiPMs,atotalof136boardsareneeded.Thereadoutsystemoperationalconditionsarehostile:ionizationdoseof with 12-bits ADC resolution; since one board digitizes the data received from 20 SiPMs, a total of 136 boards are needed. The readout system operational conditions are hostile: ionization dose of 20\ \text{krads},neutronfluxof, neutron flux of 10^{12}\ \mathrm{n}(1\ \text{MeVeq})/\text{cm}^2,magneticfieldof, magnetic field of 1\ \text{T}andinvacuumlevelof and in vacuum level of 10^{-4}\ \text{Torr}$. A description of the readout system and qualification tests is reported

    Evolving trends in the management of acute appendicitis during COVID-19 waves. The ACIE appy II study

    Get PDF
    Background: In 2020, ACIE Appy study showed that COVID-19 pandemic heavily affected the management of patients with acute appendicitis (AA) worldwide, with an increased rate of non-operative management (NOM) strategies and a trend toward open surgery due to concern of virus transmission by laparoscopy and controversial recommendations on this issue. The aim of this study was to survey again the same group of surgeons to assess if any difference in management attitudes of AA had occurred in the later stages of the outbreak. Methods: From August 15 to September 30, 2021, an online questionnaire was sent to all 709 participants of the ACIE Appy study. The questionnaire included questions on personal protective equipment (PPE), local policies and screening for SARS-CoV-2 infection, NOM, surgical approach and disease presentations in 2021. The results were compared with the results from the previous study. Results: A total of 476 answers were collected (response rate 67.1%). Screening policies were significatively improved with most patients screened regardless of symptoms (89.5% vs. 37.4%) with PCR and antigenic test as the preferred test (74.1% vs. 26.3%). More patients tested positive before surgery and commercial systems were the preferred ones to filter smoke plumes during laparoscopy. Laparoscopic appendicectomy was the first option in the treatment of AA, with a declined use of NOM. Conclusion: Management of AA has improved in the last waves of pandemic. Increased evidence regarding SARS-COV-2 infection along with a timely healthcare systems response has been translated into tailored attitudes and a better care for patients with AA worldwide
    corecore