5,480 research outputs found
Business Process Retrieval Based on Behavioral Semantics
This paper develops a framework for retrieving business processes considering search requirements based on behavioral semantics properties; it presents a framework called âBeManticsâ for retrieving business processes based on structural, linguistics, and behavioral semantics properties. The relevance of the framework is evaluated retrieving business processes from a repository, and collecting a set of relevant business processes manually issued by human judges. The âBeManticsâ framework scored high precision values (0.717) but low recall values (0.558), which implies that even when the framework avoided false negatives, it prone to false positives. The highest pre- cision value was scored in the linguistic criterion showing that using semantic inference in the tasks comparison allowed to reduce around 23.6 % the number of false positives. Using semantic inference to compare tasks of business processes can improve the precision; but if the ontologies are from narrow and specific domains, they limit the semantic expressiveness obtained with ontologies from more general domains. Regarding the perform- ance, it can be improved by using a filter phase which indexes business processes taking into account behavioral semantics properties
Tensor hypercontraction: A universal technique for the resolution of matrix elements of local, finite-range -body potentials in many-body quantum problems
Configuration-space matrix elements of N-body potentials arise naturally and
ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For
the common specialization of local, finite-range potentials, we develop the
eXact Tensor HyperContraction (X-THC) method, which provides a quantized
renormalization of the coordinate-space form of the N-body potential, allowing
for a highly separable tensor factorization of the configuration-space matrix
elements. This representation allows for substantial computational savings in
chemical, atomic, and nuclear physics simulations, particularly with respect to
difficult "exchange-like" contractions.Comment: Third version of the manuscript after referee's comments. In press in
PRL. Main text: 4 pages, 2 figures, 1 table; Supplemental material (also
included): 14 pages, 2 figures, 2 table
Effect of phytoremediated port sediment as an agricultural medium for pomegranate cultivation: Mobility of contaminants in the plant
Although the dredging of ports is a necessary management activity, it generates immense quantities of sediments, that are defined by the European Union as residues. On the other hand, the relevant peat demand for plant cultivation compromises its availability worldwide. In this context, the present work wanted to find an alternative substrate in order to replace and/or reduce the use of peat in agriculture, through the study of the suitability, concerning the exchange of substrateâplantâwater pollutants, of the dredged remediated sediments as a fruit-growing media. Forty-five pomegranate trees (Punica granatum L. cv âPurple Queenâ) were cultivated in three types of substrates (100% peat as a control, 100% dredged remediated sediments and 50% both mixed). The metal ion content and pesticide residues were analysed in the different plant parts (root, stem, leaves and fruits) and in drainage water. The results showed a limited transfer of pollutants. All the pollutants were below the legal limits, confirming that the dredged sediments could be used as a growing media, alone or mixed with other substrates. Thus, the results point out the need to open a European debate on the reuse and reconsideration of this residue from a circular economy point of view
Crystallization and preliminary X-ray diffraction analysis of levansucrase (LsdA) from Gluconacetobacter diazotrophicus SRT4
The endophytic bacterium Gluconacetobacter diazotrophicus SRT4 secretes a constitutively expressed levansucrase (LsdA; EC 2.4.1.10), which converts sucrose to fructo-oligosaccharides and levan. Fully active LsdA was purified to high homogeneity by non-denaturing reversed-phase HPLC and was crystallized at room temperature by the hanging-drop vapour-diffusion method using ammonium sulfate and ethanol as precipitants. The crystals are extremely sensitive, but native data have been collected to 2.5 A under cryogenic conditions using synchrotron radiation. LsdA crystals belong to the orthorhombic space group P22(1)2(1) or P2(1)2(1)2, with unit-cell parameters a = 53.80, b = 119.39, c = 215.10 A
The role of antibiosis in the antagonism of different bacteria towards Helminthosporium solani, the causal agent of potato silver scurf
Bacterial antagonists of Helminthosporium solani were submitted to different tests in order to determine the role of antibiosis in their antagonistic interaction. Among the bacterial strains tested, seven (Alcaligenes piechaudii, Aquaspirillum autotrophicum, Cellulomonas fimi, Pseudomonas chlororaphis, Pseudomonas putida (strains 94-19 and E-30) and Streptomyces griseus) were shown to produce agar diffusible metabolites inhibiting H. solani mycelial growth and/or conidial germination. Differential activity was revealed when diffusible metabolites were extracted from either pure cultures of these antagonists or dual culture in the presence of H. solani. The results presented indicate that the methodology employed could be a decisive factor in whether or not antibiosis can be identified as a mode of action of biocontrol agents.Des antagonistes bactĂ©riens envers Helminthosporium solani ont Ă©tĂ© soumis Ă diffĂ©rents essais en vue de dĂ©terminer le rĂŽle de l'antibiose dans l'antagonisme observĂ©. Parmi les souches bactĂ©riennes Ă©valuĂ©es, sept (Alcaligenes piechaudii, Aquaspirillum autotrophicum, Cellulomonas fimi, Pseudomonas chlororaphis, Pseudomonas putida (souches 94-19 et E-30) et Streptomyces griseus) ont produit dans le milieu gĂ©losĂ© des mĂ©tabolites inhibant la croissance mycĂ©lienne et/ou la germination des conidies de H. solani. Les mĂ©tabolites produits en culture pure et en culture mixte ont prĂ©sentĂ© une activitĂ© diffĂ©rente sur la croissance mycĂ©lienne de H. solani. Les rĂ©sultats prĂ©sentĂ©s indiquent que la mĂ©thodologie employĂ©e peut ĂȘtre un facteur dĂ©terminant dans l'identification de l'antibiose comme mode d'action d'un agent antagoniste
Application of lca methodology to the production of strawberry on substrates with peat and sediments from ports
The Life Cycle Assessment (LCA) methodology was applied to identify the potential environmental impact of dredged sediments used as growing media for food crops. The dredged sediments used came from Livorno port and were previously phytoremediated. For the assay, strawberry plants (Fragaria x ananassa Duch vr. âSan Andreasâ) were used. The plants were cultivated on three different substrates (100% peat, 100% dredged sediment and 50% mix peat/sediment) to identify the real impact of the culture media on the growing process. LCA was calculated and analyzed according to ISO 14040:2006 by SimaPro software. ReCipe Midpoint (E) V1.13/Europe Recipe E method was applied. One kilogram of produced strawberry, for each crop media tested, was defined as the functional unit. Eighteen impact categories were selected where Marine Eutrophication (ME), Human Toxicity (HT) and Freshwater Ecotoxicity (FET) were identified as relevant impact categories. The LCA results showed an increase in the environmental impact of strawberry cultivation using 100% sediment against 100% peat, due to the decrease in fruit production caused by the sediment. Nevertheless, the decrease in the environmental impact and the fruit production increase identified when the sediment is used mixed (<50%) with other substrates. The appropriate use of these substrates would be justified within the context of the circular economy
Assessing Chronotypes by Ambulatory Circadian Monitoring
© The authors 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This document is the Published version of a Published Work that appeared in final form in Frontiers in Physiology. To access the final edited and published work see https://doi.org/10.3389/fphys.2019.01396In order to develop objective indexes for chronotype identification by means of direct measurement of circadian rhythms, 159 undergraduate students were recruited as volunteers and instructed to wear ambulatory circadian monitoring (ACM) sensors that continuously gathered information on the individualâs environmental light and temperature exposure, wrist temperature, body position, activity, and the integrated TAP (temperature, activity, and position) variable for 7 consecutive days under regular freeliving conditions. Among all the proposed indexes, the night phase marker (NPM) of the TAP variable was the best suited to discriminate among chronotypes, due to its relationship with the Munich ChronoType Questionnaire (b = 0.531; p < 0.001). The NPM of TAP allowed subjects to be classified as early- (E-type, 20%), neither- (N-type,
60%), and late-types (L-type, 20%), each of which had its own characteristics. In terms of light exposure, while all subjects had short exposure times to bright light (>100 lux), with a daily average of 93.84 5.72 min, the earlier chronotypes were exposed to brighter days and darker nights compared to the later chronotypes. Furthermore, the earlier chronotypes were associated with higher stability and dayânight contrast, along
with an earlier phase, which could be the cause or consequence of the light exposure habits. Overall, these data support the use of ACM for chronotype identification and for evaluation under free living conditions, using objective markers
Healthcare in Action Fellowship [2024]
The Florida International University Herbert Wertheim College of Medicineâs Healthcare in Action (HIA) Fellowship is an experiential learning opportunity in collaboration with FIU in DC designed to educate medical students on healthcare policy and leadership at the federal level. The highlight of the fellowship includes a 2-day fly-in to Washington D.C. where students interact with and learn from various stakeholders that influence health policy, including federal agencies, think-tanks, lobbying groups, and non-governmental organizations. This yearâs trip consisted of conversations with the KFF, CATO Institute, Ferring Pharmaceuticals, PhRMA, USAID, and U.S. Department of Health and Human Services. Fellows also had the opportunity to visit the congressional offices of Rep. Dr. Michael Burgess (TX-26) and Rep. Byron Donalds (FL-19) to discuss legislative action on healthcare reform and share perspectives on current challenges and future goals. The fellows selected for this trip are a vibrant and diverse group of medical students who share a passion for healthcare policy and are interested in assuming leadership roles during their medical careers. Each fellow authored a research brief pertaining to their own personal healthcare policy interest, and the culmination of their work is provided in this document
The ISLAndS project II: The Lifetime Star Formation Histories of Six Andromeda dSphs
The Initial Star formation and Lifetimes of Andromeda Satellites (ISLAndS)
project uses Hubble Space Telescope imaging to study a representative sample of
six Andromeda dSph satellite companion galaxies. The main goal of the program
is to determine whether the star formation histories (SFHs) of the Andromeda
dSph satellites demonstrate significant statistical differences from those of
the Milky Way, which may be attributable to the different properties of their
local environments. Our observations reach the oldest main sequence turn-offs,
allowing a time resolution at the oldest ages of ~ 1 Gyr, which is comparable
to the best achievable resolution in the MW satellites. We find that the six
dSphs present a variety of SFHs that are not strictly correlated with
luminosity or present distance from M31. Specifically, we find a significant
range in quenching times (lookback times from 9 to 6 Gyr), but with all
quenching times more than ~ 6 Gyr ago. In agreement with observations of Milky
Way companions of similar mass, there is no evidence of complete quenching of
star formation by the cosmic UV background responsible for reionization, but
the possibility of a degree of quenching at reionization cannot be ruled out.
We do not find significant differences between the SFHs of the three members of
the vast, thin plane of satellites and the three off-plane dSphs. The primary
difference between the SFHs of the ISLAndS dSphs and Milky Way dSph companions
of similar luminosities and host distances is the absence of very late
quenching (< 5 Gyr ago) dSphs in the ISLAndS sample. Thus, models that can
reproduce satellite populations with and without late quenching satellites will
be of extreme interest.Comment: 24 pages, 11 figures, 3 tables, submitted to the Ap
Genetic inhibition of flowering differs between juvenile and adult Citrus trees
[EN] Background and Aims In woody species, the juvenile period maintains the axillary meristems in a vegetative stage, unable to flower, for several years. However, in adult trees, some 1-year-old meristems flower whereas others remain vegetative to ensure a polycarpic growth habit. Both types of trees, therefore, have non-flowering meristems, and we hypothesize that the molecular mechanism regulating flower inhibition in juvenile trees is different from that in adult trees.
Methods In adult Citrus trees, the main endogenous factor inhibiting flower induction is the growing fruit. Thus, we studied the expression of the main flowering time, identity and patterning genes of trees with heavy fruit load (not-flowering adult trees) compared to that of 6-month-old trees (not-flowering juvenile trees). Adult trees without fruits (flowering trees) were used as a control. Second, we studied the expression of the same genes in the meristems of 6-month, and 1-, 3-, 5-and 7-year-old juvenile trees compared to 10-year-old flowering trees.
Key Results The axillary meristems of juvenile trees are unable to transcribe flowering time and patterning genes during the period of induction, although they are able to transcribe the FLOWERING LOCUS T citrus orthologue (CiFT2) in leaves. By contrast, meristems of not-flowering adult trees are able to transcribe the flowering network genes but fail to achieve the transcription threshold required to flower, due to CiFT2 repression by the fruit. Juvenile meristems progressively achieve gene expression, with age-dependent differences from 6 months to 7 years, FD-like and CsLFY being the last genes to be expressed.
Conclusions During the juvenile period the mechanism inhibiting flowering is determined in the immature bud, so that it progressively acquires flowering ability at the gene expression level of the flowering time programme, whereas in the adult tree it is determined in the leaf, where repression of CiFT2 gene expression occurs.We thank Cristina Ferrandiz (IBMCP-UPV, Spain) and Fernando Andres (UMR AGAP, France) for useful comments on the manuscript. We thank D. Westall for her help in editing the manuscript. This work was supported by a grant from the Ministerio de Economia y Competitividad, Spain (RTA2013-0024-C02-02)Muñoz Fambuena, N.; Nicolas-Almansa, M.; Martinez Fuentes, A.; Reig Valor, C.; Iglesias, DJ.; Primo-Millo, E.; Mesejo Conejos, C.... (2019). Genetic inhibition of flowering differs between juvenile and adult Citrus trees. Annals of Botany. 123(3):483-490. https://doi.org/10.1093/aob/mcy179S4834901233Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983Albani, M. C., & Coupland, G. (2010). Comparative Analysis of Flowering in Annual and Perennial Plants. Plant Development, 323-348. doi:10.1016/s0070-2153(10)91011-9AndrĂ©s, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291BalanzĂ , V., MartĂnez-FernĂĄndez, I., Sato, S., Yanofsky, M. F., Kaufmann, K., Angenent, G. C., ⊠FerrĂĄndiz, C. (2018). Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nature Communications, 9(1). doi:10.1038/s41467-018-03067-5BĂ€urle, I., & Dean, C. (2006). The Timing of Developmental Transitions in Plants. Cell, 125(4), 655-664. doi:10.1016/j.cell.2006.05.005Betancourt, M., Sistachs, V., MartĂnez-Fuentes, A., Mesejo, C., Reig, C., & AgustĂ, M. (2014). Influence of harvest date on fruit yield and return bloom in âMarshâ grapefruit trees (Citrus paradisiMacf.) grown under a tropical climate. The Journal of Horticultural Science and Biotechnology, 89(4), 435-440. doi:10.1080/14620316.2014.11513103BlĂĄzquez, M. A., FerrĂĄndiz, C., Madueño, F., & Parcy, F. (2006). How Floral Meristems are Built. Plant Molecular Biology, 60(6), 855-870. doi:10.1007/s11103-006-0013-zBlĂŒmel, M., Dally, N., & Jung, C. (2015). Flowering time regulation in crops â what did we learn from Arabidopsis? Current Opinion in Biotechnology, 32, 121-129. doi:10.1016/j.copbio.2014.11.023Castillo, M.-C., Forment, J., Gadea, J., Carrasco, J. L., Juarez, J., Navarro, L., & Ancillo, G. (2013). Identification of transcription factors potentially involved in the juvenile to adult phase transition in Citrus. Annals of Botany, 112(7), 1371-1381. doi:10.1093/aob/mct211Chica, E. J., & Albrigo, L. G. (2013). Expression of Flower Promoting Genes in Sweet Orange during Floral Inductive Water Deficits. Journal of the American Society for Horticultural Science, 138(2), 88-94. doi:10.21273/jashs.138.2.88Endo, T., Shimada, T., Fujii, H., Kobayashi, Y., Araki, T., & Omura, M. (2005). Ectopic Expression of an FT Homolog from Citrus Confers an Early Flowering Phenotype on Trifoliate Orange (Poncirus trifoliata L. Raf.). Transgenic Research, 14(5), 703-712. doi:10.1007/s11248-005-6632-3Haberman, A., Ackerman, M., Crane, O., Kelner, J.-J., Costes, E., & Samach, A. (2016). Different flowering response to various fruit loads in apple cultivars correlates with degree of transcript reaccumulation of a TFL1-encoding gene. The Plant Journal, 87(2), 161-173. doi:10.1111/tpj.13190Hanano, S., & Goto, K. (2011). Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression. The Plant Cell, 23(9), 3172-3184. doi:10.1105/tpc.111.088641Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., ⊠Machado, M. A. (2012). Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions. PLoS ONE, 7(2), e31263. doi:10.1371/journal.pone.0031263MartĂnez-Fuentes, A., Mesejo, C., Reig, C., & AgustĂ, M. (2010). Timing of the inhibitory effect of fruit on return bloom of âValenciaâ sweet orange (Citrus sinensis
(L.) Osbeck). Journal of the Science of Food and Agriculture, 90(11), 1936-1943. doi:10.1002/jsfa.4038Michaels, S. D., & Amasino, R. M. (1999). FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. The Plant Cell, 11(5), 949-956. doi:10.1105/tpc.11.5.949Muñoz-Fambuena, N., Mesejo, C., Carmen GonzĂĄlez-Mas, M., Primo-Millo, E., AgustĂ, M., & Iglesias, D. J. (2011). Fruit regulates seasonal expression of flowering genes in alternate-bearing âMoncadaâ mandarin. Annals of Botany, 108(3), 511-519. doi:10.1093/aob/mcr164Muñoz-Fambuena, N., Mesejo, C., GonzĂĄlez-Mas, M. C., Primo-Millo, E., AgustĂ, M., & Iglesias, D. J. (2012). Fruit load modulates flowering-related gene expression in buds of alternate-bearing âMoncadaâ mandarin. Annals of Botany, 110(6), 1109-1118. doi:10.1093/aob/mcs190Nishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., Omura, M., & Ikoma, Y. (2007). Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). Journal of Experimental Botany, 58(14), 3915-3927. doi:10.1093/jxb/erm246Peña, L., MartĂn-Trillo, M., JuĂĄrez, J., Pina, J. A., Navarro, L., & MartĂnez-Zapater, J. M. (2001). Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology, 19(3), 263-267. doi:10.1038/85719Pillitteri, L. J., Lovatt, C. J., & Walling, L. L. (2004). Isolation and Characterization of a TERMINAL FLOWER Homolog and Its Correlation with Juvenility in Citrus. Plant Physiology, 135(3), 1540-1551. doi:10.1104/pp.103.036178Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.-S., & Lee, I. (2009). Crosstalk between Cold Response and Flowering in Arabidopsis Is Mediated through the Flowering-Time Gene SOC1 and Its Upstream Negative Regulator FLC. The Plant Cell, 21(10), 3185-3197. doi:10.1105/tpc.108.063883Sgamma, T., Jackson, A., Muleo, R., Thomas, B., & Massiah, A. (2014). TEMPRANILLO is a regulator of juvenility in plants. Scientific Reports, 4(1). doi:10.1038/srep03704Shalom, L., Samuels, S., Zur, N., Shlizerman, L., Zemach, H., Weissberg, M., ⊠Sadka, A. (2012). Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees. PLoS ONE, 7(10), e46930. doi:10.1371/journal.pone.0046930Shalom, L., Samuels, S., Zur, N., Shlizerman, L., Doron-Faigenboim, A., Blumwald, E., & Sadka, A. (2014). Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. Journal of Experimental Botany, 65(12), 3029-3044. doi:10.1093/jxb/eru148Sohn, E. J., Rojas-Pierce, M., Pan, S., Carter, C., Serrano-Mislata, A., Madueno, F., ⊠Raikhel, N. V. (2007). The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. Proceedings of the National Academy of Sciences, 104(47), 18801-18806. doi:10.1073/pnas.0708236104Spiegel-Roy, P., & Goldschmidt, E. E. (1996). The Biology of Citrus. doi:10.1017/cbo9780511600548Sussmilch, F. C., Berbel, A., Hecht, V., Vander Schoor, J. K., FerrĂĄndiz, C., Madueño, F., & Weller, J. L. (2015). Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development. The Plant Cell, 27(4), 1046-1060. doi:10.1105/tpc.115.136150Tan, F.-C., & Swain, S. M. (2007). Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiologia Plantarum, 131(3), 481-495. doi:10.1111/j.1399-3054.2007.00971.xLeal Valentim, F., Mourik, S. van, PosĂ©, D., Kim, M. C., Schmid, M., van Ham, R. C. H. J., ⊠van Dijk, A. D. J. (2015). A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network. PLOS ONE, 10(2), e0116973. doi:10.1371/journal.pone.0116973Wang, J.-W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell, 138(4), 738-749. doi:10.1016/j.cell.2009.06.014Weigel, D. (1995). The Genetics of Flower Development: From Floral Induction to Ovule Morphogenesis. Annual Review of Genetics, 29(1), 19-39. doi:10.1146/annurev.ge.29.120195.00031
- âŠ