45 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Hepatic insulin resistance both in prediabetic and diabetic patients determines postprandial lipoprotein metabolism: from the CORDIOPREV study.

    No full text
    Previous evidences have shown the presence of a prolonged and exaggerated postprandial response in type 2 diabetes mellitus (T2DM) and its relation with an increase of cardiovascular risk. However, the response in prediabetes population has not been established. The objective was to analyze the degree of postprandial lipemia response in the CORDIOPREV clinical trial (NCT00924937) according to the diabetic status. 1002 patients were submitted to an oral fat load test meal (OFTT) with 0.7 g fat/kg body weight [12 % saturated fatty acids (SFA), 10 % polyunsaturated fatty acids (PUFA), 43 % monounsaturated fatty acids (MUFA), 10 % protein and 25 % carbohydrates]. Serial blood test analyzing lipid fractions were drawn at 0, 1, 2, 3 and 4 h during postprandial state. Postprandial triglycerides (TG) concentration at any point >2.5 mmol/L (220 mg/dL) has been established as undesirable response. We explored the dynamic response in 57 non-diabetic, 364 prediabetic and 581 type 2 diabetic patients. Additionally, the postprandial response was evaluated according to basal insulin resistance subgroups in patients non-diabetic and diabetic without pharmacological treatment (N = 642). Prevalence of undesirable postprandial TG was 35 % in non-diabetic, 48 % in prediabetic and 59 % in diabetic subgroup, respectively (p Our findings demonstrate that prediabetic patients show a lower phenotypic flexibility after external aggression, such as OFTT compared with nondiabetic patients. The postprandial response increases progressively according to non-diabetic, prediabetic and type 2 diabetic state and it is higher in patients with liver insulin-resistance. To identify this subgroup of patients is important to treat more intensively in order to avoid future cardiometabolic complications

    Plasma lipidic fingerprint associated with type 2 diabetes in patients with coronary heart disease: CORDIOPREV study

    No full text
    Abstract Objective We aimed to identify a lipidic profile associated with type 2 diabetes mellitus (T2DM) development in coronary heart disease (CHD) patients, to provide a new, highly sensitive model which could be used in clinical practice to identify patients at T2DM risk. Methods This study considered the 462 patients of the CORDIOPREV study (CHD patients) who were not diabetic at the beginning of the intervention. In total, 107 of them developed T2DM after a median follow-up of 60 months. They were diagnosed using the American Diabetes Association criteria. A novel lipidomic methodology employing liquid chromatography (LC) separation followed by HESI, and detection by mass spectrometry (MS) was used to annotate the lipids at the isomer level. The patients were then classified into a Training and a Validation Set (60–40). Next, a Random Survival Forest (RSF) was carried out to detect the lipidic isomers with the lowest prediction error, these lipids were then used to build a Lipidomic Risk (LR) score which was evaluated through a Cox. Finally, a production model combining the clinical variables of interest, and the lipidic species was carried out. Results LC-tandem MS annotated 440 lipid species. From those, the RSF identified 15 lipid species with the lowest prediction error. These lipids were combined in an LR score which showed association with the development of T2DM. The LR hazard ratio per unit standard deviation was 2.87 and 1.43, in the Training and Validation Set respectively. Likewise, patients with higher LR Score values had lower insulin sensitivity (P = 0.006) and higher liver insulin resistance (P = 0.005). The receiver operating characteristic (ROC) curve obtained by combining clinical variables and the selected lipidic isomers using a generalised lineal model had an area under the curve (AUC) of 81.3%. Conclusion Our study showed the potential of comprehensive lipidomic analysis in identifying patients at risk of developing T2DM. In addition, the lipid species combined with clinical variables provided a new, highly sensitive model which can be used in clinical practice to identify patients at T2DM risk. Moreover, these results also indicate that we need to look closely at isomers to understand the role of this specific compound in T2DM development. Trials registration NCT00924937
    corecore