1,931 research outputs found

    Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped Cu(111) surfaces

    Get PDF
    We have investigated the adsorption of hydrazine (N2H4) and its reactivity on terraces and steps of Cu(111) surfaces by first-principles calculations in order to gain insight into the hydrazine decomposition mechanism. We have investigated different possibilities for the N–N and N–H bond cleavage for any intermediate states by analysing the reaction and barrier energies of each elementary step. We have found that hydrazine dehydrogenation via N–H bond scission is neither energetically nor kinetically favourable on the flat and stepped surfaces, but hydrazine prefers to form NH2via N–N bond decoupling on the Cu(111) with an activation energy below 1 eV. The NH2 molecule reacts fairly easily with co-adsorbed NH2 to form NH3 as well as with N2Hx (x = 1–4) by abstracting hydrogen to produce NH3 and N2 molecules on both the flat and stepped surfaces. We also found that all intermediates except NNH prefer N–N bond breaking as the most likely dissociation pathway, where the amide and imide intermediates produced can be hydrogenated to form NH3 in the presence of hydrogen. NNH is the only intermediate, which prefers to dissociate via a highly exothermic N–H bond breaking process to produce an N2 molecule after overcoming a small barrier energy. We also studied the production of H2 by recombination of hydrogen ad-atoms which, considering the activation energies, is particularly favoured under conditions of moderate temperatures. Our results agree well with experiments suggesting that N2H4 adsorbs dissociatively on copper above ∌300 K leading to N2, NH3 and H2. In general, the lower coordination of the steps is found to lead to higher reactivity than on the flat Cu(111) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the intra- and intermolecular dehydrogenation mechanisms. They also increase the barrier of N–N decoupling of all the existing species in the reaction

    Goodness-of-Fit Tests to study the Gaussianity of the MAXIMA data

    Full text link
    Goodness-of-Fit tests, including Smooth ones, are introduced and applied to detect non-Gaussianity in Cosmic Microwave Background simulations. We study the power of three different tests: the Shapiro-Francia test (1972), the uncategorised smooth test developed by Rayner and Best(1990) and the Neyman's Smooth Goodness-of-fit test for composite hypotheses (Thomas and Pierce 1979). The Smooth Goodness-of-Fit tests are designed to be sensitive to the presence of ``smooth'' deviations from a given distribution. We study the power of these tests based on the discrimination between Gaussian and non-Gaussian simulations. Non-Gaussian cases are simulated using the Edgeworth expansion and assuming pixel-to-pixel independence. Results show these tests behave similarly and are more powerful than tests directly based on cumulants of order 3, 4, 5 and 6. We have applied these tests to the released MAXIMA data. The applied tests are built to be powerful against detecting deviations from univariate Gaussianity. The Cholesky matrix corresponding to signal (based on an assumed cosmological model) plus noise is used to decorrelate the observations previous to the analysis. Results indicate that the MAXIMA data are compatible with Gaussianity.Comment: MNRAS, in pres

    Log canonical thresholds of Del Pezzo Surfaces in characteristic p

    Get PDF
    The global log canonical threshold of each non-singular complex del Pezzo surface was computed by Cheltsov. The proof used Koll\'ar-Shokurov's connectedness principle and other results relying on vanishing theorems of Kodaira type, not known to be true in finite characteristic. We compute the global log canonical threshold of non-singular del Pezzo surfaces over an algebraically closed field. We give algebraic proofs of results previously known only in characteristic 00. Instead of using of the connectedness principle we introduce a new technique based on a classification of curves of low degree. As an application we conclude that non-singular del Pezzo surfaces in finite characteristic of degree lower or equal than 44 are K-semistable.Comment: 21 pages. Thorough rewrite following referee's suggestions. To be published in Manuscripta Mathematic

    Delta rho pi interaction leading to N* and Delta* resonances

    Full text link
    We have performed a calculation for the three body Δρπ\Delta \rho \pi system by using the fixed center approximation to Faddeev equations, taking the interaction between Δ\Delta and ρ\rho, Δ\Delta andπ\pi, and ρ\rho and π\pi from the chiral unitary approach. We find several peaks in the modulus squared of the three-body scattering amplitude, indicating the existence of resonances, which can be associated to known I=1/2,3/2I=1/2, 3/2 and JP=1/2+,3/2+J^P=1/2^+, 3/2^+ and 5/2+5/2^+ baryon states.Comment: Presented at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, 30 August - 3 September 201

    Mechanical durability of hydrophobic surfaces fabricated by injection moulding of laser-induced textures

    Get PDF
    YesThe paper reports an investigation on the mechanical durability of textured thermoplastic surfaces together with their respective wetting properties. A range of laser-induced topographies with different aspect ratios from micro to nanoscale were fabricated on tool steel inserts using an ultrashort pulsed near infrared laser. Then, through micro-injection moulding the topographies were replicated onto polypropylene surfaces and their durability was studied systematically. In particular, the evolution of topographies on textured thermoplastic surfaces together with their wetting properties were investigated after undergoing a controlled mechanical abrasion, i.e. reciprocating dry and wet cleaning cycles. The obtained empirical data was used both to study the effects of cleaning cycles and also to identify cleaning procedures with a minimal impact on textured thermoplastic surfaces and their respective wetting properties. In addition, the use of 3D areal parameters that are standardised and could be obtained readily with any state-of-the-art surface characterisation system are discussed for monitoring the surfaces' functional response.European Commission H2020 ITN programme “European ESRs Network on Short Pulsed Laser Micro/Nanostructuring of Surfaces for Improved Functional Applications” (Laser4Fun) under the Marie SkƂodowska-Curie grant agreement No. 675063 (www.laser4fun.eu) and the UKIERI DST programme “Surface functionalisation for food, packaging, and healthcare applications”. In addition, the work was supported by three other H2020 programmes, i.e. the projects on “Modular laser based additive manufacturing platform for large scale industrial applications” (MAESTRO), “High-Impact Injection Moulding Platform for mass-production of 3D and/or large micro-structured surfaces with Antimicrobial, Self-cleaning, Anti-scratch, Anti-squeak and Aesthetic functionalities” (HIMALAIA) and “Process Fingerprint for Zero-defect Net-shape Micromanufacturing” (MICROMAN)

    Holography: 2-D or not 2-D?

    Full text link
    As was recently pointed out by Cadoni, a certain class of two-dimensional gravitational theories will exhibit (black hole) thermodynamic behavior that is reminiscent of a free field theory. In the current letter, a direct correspondence is established between these two-dimensional models and the strongly curved regime of (arbitrary-dimensional) anti-de Sitter gravity. On this basis, we go on to speculatively argue that two-dimensional gravity may ultimatley be utilized for identifying and perhaps even understanding holographic dualities.Comment: 8 pages, Revtex; (v2) references and footnote added; (v3) discussion on page 5 revise

    Granular discharge and clogging for tilted hoppers

    Full text link
    We measure the flux of spherical glass beads through a hole as a systematic function of both tilt angle and hole diameter, for two different size beads. The discharge increases with hole diameter in accord with the Beverloo relation for both horizontal and vertical holes, but in the latter case with a larger small-hole cutoff. For large holes the flux decreases linearly in cosine of the tilt angle, vanishing smoothly somewhat below the angle of repose. For small holes it vanishes abruptly at a smaller angle. The conditions for zero flux are discussed in the context of a {\it clogging phase diagram} of flow state vs tilt angle and ratio of hole to grain size

    TiO2-MWCNT Nanohybrid: Cytotoxicity, protein corona formation and cellular internalisation in RTG-2 fish cell line

    Get PDF
    Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology

    Highly-anisotropic and strongly-dissipative hydrodynamics with transverse expansion

    Full text link
    A recently formulated framework of highly-anisotropic and strongly-dissipative hydrodynamics (ADHYDRO) is used to describe the evolution of matter created in ultra-relativistic heavy-ion collisions. New developments of the model contain: the inclusion of asymmetric transverse expansion (combined with the longitudinal boost-invariant flow) and comparisons of the model results with the RHIC data, which have become possible after coupling of ADHYDRO with THERMINATOR. Various soft-hadronic observables (the transverse-momentum spectra, the elliptic flow coefficient v_2, and the HBT radii) are calculated for different initial conditions characterized by the value of the initial pressure asymmetry. We find that as long as the initial energy density profile is unchanged the calculated observables remain practically the same. This result indicates the insensitivity of the analyzed observables to the initial anisotropy of pressure and suggests that the complete thermalization of the system may be delayed to easily acceptable times of about 1 fm/c
    • 

    corecore