1,610 research outputs found

    The Country-Specific Nature of Apparel Elasticities and Impacts of the Multi-Fibre Arrangement

    Get PDF
    Beginning with Krugman and Helpman’s theory of demand for differentiated products, this paper estimates 104 direct price elasticities of demand for apparel in the United States. While the literature has established that apparel elasticities vary by category and across countries, I examine how price elasticities of demand for apparel vary by country, regions, product characteristics, and after the end of the Multi-Fibre Arrangement. Results suggest that the country has the greatest single explanatory power in predicting price elasticities, and additionally, the “race to the bottom” hypothesis in the apparel industry is supported through increasing elasticity of 3.4% from the mean value of overall price elasticity after the end of the MFA

    12Cao-7Al2o3 Electride Hollow Cathode

    Get PDF
    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube

    Syringe Pump

    Get PDF
    Our team was asked to design a syringe pump that would deliver fluid at a controlled flow rate to cells in a microfluidic device. The design process of our syringe pump proved to be a very dynamic one. The beginning research of both microfluidic devices and existing syringe pumps helped our team get an idea of ways we could implement existing aspects that work into our design. There were many existing devices that resembled the one that we were asked to make closely; however, due to our resources as students, we had to be a bit more creative in figuring out how to afford and assemble each component to the best of our abilities. Developing customer requirements was a huge step in the process of understanding what exactly you as our customer wanted to see delivered in our syringe pump. The main requirements of our pump were that it was able to deliver accurate shear stress values so that they could mimic those found in true physiology, that it was able to deliver an accurate flow rate to the device, that it was easily usable, and that it was compact to both fit in a desired location and have ease of mobility when needed to be moved to or from that location. Next, it was our job as the engineers to turn those requirements into quantitative engineering specifications that our device needed to meet via testing of the device once the prototype was finished. Once we determined what numbers needed to be hit to quantify the requirements set by you, we were able to create a network diagram of tasks in order to organize the design, manufacturing, and testing processes that we had ahead. Our design process then became a series of brainstorming via tools like a conjoint analysis, morphology, and Pugh matrices. We did these exercises in order to compile a multitude of ideas for each component of the pump to determine which combination of these ideas would produce the optimal pump that is attractive to the user and does the best job at meeting the customer specifications. We determined the main functions of our pump were inputting flow rate parameters on the interface, having a power source for the pushing mechanism, the physical pushing mechanism, and lastly the mechanism through which the fluid would be delivered into the tube. Ultimately, through the many exercises as well as iterations due to a multitude of realizations down the road, we settled upon using a stepper motor linear actuator for the pushing mechanism and a screen with buttons for the input from the user, powered by a 24 V DC Power Supply and connected by a needle attachment to the syringe. Next came acquiring the materials and aspects of the pump that were to be purchased from a manufacturer as well as designing the aspects that we were going to manufacture ourselves. The primary component of our design that we purchased was the FUYU stepper motor linear actuator, to which we programmed electrically and designed adapters to fit onto. Our electrical programming revolved around the Arduino UNO and the Sketch coding software. The chassis was our last component to design, and its main purpose was to keep the user safe from any potential harm from the pump and protect the pump from any water or other wear. When we had performed the Hazard Safety Assessment, we determined a lot of the risk involved the user having their hands in the pinch points as well as having the device fall on the user, both of which were mitigated by having a chassis that covered the pinch point and made the device more compact and mobile. Once we had those components designed, we determined how we would both manufacture and assemble the final prototype. These plans were surely dynamic as we changed materials and found new ways to better manufacture each piece. Critical changes included changing the chassis material from acrylic to polycarbonate, and thus changing the manufacturing process from laser jetting to water jetting to using a variety of saws to cut the pieces. Another critical change came after having manufactured the pusher block adapter, as we were sent back to the design process when the adapter did not perform the way we wanted it to. Additionally, the electrical side of our design manufacturing had to be iterated multiple times as we determined what was feasible and still effective for inputting the parameters. Our design changed from a 4 x 4 keypad to two buttons, one increasing the flow rate value and one decreasing the value. Once the prototype had been built, it was time to verify that we had made a device that met the customer specifications. We created protocols for how we would test these specifications and executed each of the four, the most time-consuming ones being the flow rate and shear stress tests. Our testing plans for shear stress included both an analytical COMSOL simulation through the solid model of the microfluidic device as well as physical testing of the velocity of the particles moving via the LabSmith Micro Particle Image Velocimetry microscope. The physical testing was to verify that our analytical model accurately displayed what velocity and thus shear stresses the cells in our microfluidic devices would be experiencing. Next, we tested flow rate via running water through our pump at specified flow rates for a given period of time, measuring the mass acquired on a sensitive scale to back-calculate what flow rate was actually being delivered. Additionally, we used a gauge to measure the displacement of our pusher block over a specified time to first ensure that the correct speed was being programmed to the motor. In terms of surface area testing, we simply used a ruler to measure the dimensions of the bottom of our chassis to verify it would fit in the desired location in the lab. Lastly, our ease of use testing included simply numbering the steps in the operations manual. Ultimately, our data showed that we did in fact create a pump that received an input and delivered a controllable flow rate and shear stress to the cells in the microfluidic devices, all while being compact and easily usable. After inputting a flow rate of 28.8 ml/hr, we measured the delivered flow rate to be 25.5 ml/hr, which was within our target percent error range of 15%. For shear stress, when entering a flow rate of 75.8 uL/hr, our physical testing showed a particle velocity of 295.6 um/s and our COMSOL velocity showed one of 358.91 um/s, putting these within range of our 20% error goal. We measured the bottom surface area of our pump to be 431.85 cm^2, which was well within our specification of 695 cm^2. Lastly, we measured 5 steps to program our device, which was our target specification. There were surely limitations to our data, as when flow rate decreased to smaller and smaller values it was increasingly harder to acquire data, and then additionally extremely difficult to have that data be accurate. Thus, at the flow rate of 0.76 uL/hr, which is the flow rate at which the pump will typically be used at, both the shear stress and flow rate specifications were not met via our testing. There are a multitude of reasons why our data may have been skewed, and we have plans for future testing to discover where errors might be introduced in our pump. Overall, our team learned much about the design process and grew as engineers while designing this syringe pump

    Feasibility of Using a Commercial Fitness Tracker as an Adjunct to Family-Based Weight Management Treatment: Pilot Randomized Trial.

    Get PDF
    BACKGROUND: Fitness trackers can engage users through automated self-monitoring of physical activity. Studies evaluating the utility of fitness trackers are limited among adolescents, who are often difficult to engage in weight management treatment and are heavy technology users. OBJECTIVE: We conducted a pilot randomized trial to describe the impact of providing adolescents and caregivers with fitness trackers as an adjunct to treatment in a tertiary care weight management clinic on adolescent fitness tracker satisfaction, fitness tracker utilization patterns, and physical activity levels. METHODS: Adolescents were randomized to 1 of 2 groups (adolescent or dyad) at their initial weight management clinic visit. Adolescents received a fitness tracker and counseling around activity data in addition to standard treatment. A caregiver of adolescents in the dyad group also received a fitness tracker. Satisfaction with the fitness tracker, fitness tracker utilization patterns, and physical activity patterns were evaluated over 3 months. RESULTS: A total of 88 adolescents were enrolled, with 69% (61/88) being female, 36% (32/88) black, 23% (20/88) Hispanic, and 63% (55/88) with severe obesity. Most adolescents reported that the fitness tracker was helping them meet their healthy lifestyle goals (69%) and be more motivated to achieve a healthy weight (66%). Despite this, 68% discontinued use of the fitness tracker by the end of the study. There were no significant differences between the adolescent and the dyad group in outcomes, but adolescents in the dyad group were 12.2 times more likely to discontinue using their fitness tracker if their caregiver also discontinued use of their fitness tracker (95% CI 2.4-61.6). Compared with adolescents who discontinued use of the fitness tracker during the study, adolescents who continued to use the fitness tracker recorded a higher number of daily steps in months 2 and 3 of the study (mean 5760 vs 4148 in month 2, P=.005, and mean 5942 vs 3487 in month 3, P=.002). CONCLUSIONS: Despite high levels of satisfaction with the fitness trackers, fitness tracker discontinuation rates were high, especially among adolescents whose caregivers also discontinued use of their fitness tracker. More studies are needed to determine how to sustain the use of fitness trackers among adolescents with obesity and engage caregivers in adolescent weight management interventions

    Factors Impacting COVID-19 Vaccine Hesitancy and Resistance Among College Students in Northwest Ohio

    Get PDF
    Background: Vaccination is a critical strategy for controlling the transmission of COVID-19 and for returning to normalcy on college campuses; however, vaccine hesitancy and resistance persist as a significant barrier. This study utilized the integrated behavior model (IBM) and the precaution adoption process model (PAPM) to identify factors predictive of COVID-19 vaccine willingness (receptive, hesitant, and resistant) among college students. Methods: A sample of 1248 students at 2 universities in northwest Ohio were surveyed online in 2021. Stata/SE, version 17 (StataCorp) software was used to conduct stepwise logistic regression to investigate the association of theoretical constructs with vaccine willingness, after controlling for COVID-19 related factors and sociodemographic factors. Results: Most students (82.5%) were vaccine receptive, 6.9% were vaccine hesitant, and 10.6% were vaccine resistant. Vaccine hesitancy was higher among students aged 18 to 22 years (9.3%), undergraduates (16.5%), and students who identified as Black (13%) or Middle Eastern (14.3%). Lower vaccine hesitance was significantly predicted by IBM constructs of positive attitudes, high self-efficacy, and high salience. Not getting an influenza vaccine in the past 3 years and viewing vaccination as a personal choice were significantly associated with higher vaccine hesitancy. Lower odds of vaccine resistance were predicted by higher subjective norms. Descriptive norms, not getting an influenza vaccine in the past 3 years, agreeing with conspiracies, and viewing vaccination as a personal choice were strongly predictive of higher vaccine resistance. Conclusion: Identifying the factors that predict vaccine hesitancy and resistance among college students is critical for college administrators, and for those who are designing health communication campaigns, to increase vaccination among this priority population

    Treatment experiences of Latinas after diagnosis of breast cancer

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138310/1/cncr30702.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138310/2/cncr30702_am.pd

    Association of comorbidity burden with abnormal cardiac mechanics: Findings from the HyperGEN study

    Get PDF
    BACKGROUND: Comorbidities are common in heart failure (HF), and the number of comorbidities has been associated with poor outcomes in HF patients. However, little is known about the effect of multiple comorbidities on cardiac mechanics, which could impact the pathogenesis of HF. We sought to determine the relationship between comorbidity burden and adverse cardiac mechanics. METHODS AND RESULTS: We performed speckle‐tracking analysis on echocardiograms from the HyperGEN study (n=2150). Global longitudinal, circumferential, and radial strain, and early diastolic (e') tissue velocities were measured. We evaluated the association between comorbidity number and cardiac mechanics using linear mixed effects models to account for relatedness among subjects. The mean age was 51±14 years, 58% were female, and 47% were African American. Dyslipidemia and hypertension were the most common comorbidities (61% and 58%, respectively). After adjusting for left ventricular (LV) mass index, ejection fraction, and several potential confounders, the number of comorbidities remained associated with all indices of cardiac mechanics except global circumferential strain (eg, β=−0.32 [95% CI −0.44, −0.20] per 1‐unit increase in number of comorbidities for global longitudinal strain; β=−0.16 [95% CI −0.20, −0.11] for e' velocity; P≤0.0001 for both comparisons). Results were similar after excluding participants with abnormal LV geometry (P<0.05 for all comparisons). CONCLUSIONS: Higher comorbidity burden is associated with worse cardiac mechanics, even in the presence of normal LV geometry. The deleterious effect of multiple comorbidities on cardiac mechanics may explain both the high comorbidity burden and adverse outcomes in patients who ultimately develop HF

    Ecogeographical rules and the macroecology of food webs

    Get PDF
    AimHow do factors such as space, time, climate and other ecological drivers influence food web structure and dynamics? Collections of well‐studied food webs and replicate food webs from the same system that span biogeographical and ecological gradients now enable detailed, quantitative investigation of such questions and help integrate food web ecology and macroecology. Here, we integrate macroecology and food web ecology by focusing on how ecogeographical rules [the latitudinal diversity gradient (LDG), Bergmann’s rule, the island rule and Rapoport’s rule] are associated with the architecture of food webs.LocationGlobal.Time periodCurrent.Major taxa studiedAll taxa.MethodsWe discuss the implications of each ecogeographical rule for food webs, present predictions for how food web structure will vary with each rule, assess empirical support where available, and discuss how food webs may influence ecogeographical rules. Finally, we recommend systems and approaches for further advancing this research agenda.ResultsWe derived testable predictions for some ecogeographical rules (e.g. LDG, Rapoport’s rule), while for others (e.g., Bergmann’s and island rules) it is less clear how we would expect food webs to change over macroecological scales. Based on the LDG, we found weak support for both positive and negative relationships between food chain length and latitude and for increased generality and linkage density at higher latitudes. Based on Rapoport’s rule, we found support for the prediction that species turnover in food webs is inversely related to latitude.Main conclusionsThe macroecology of food webs goes beyond traditional approaches to biodiversity at macroecological scales by focusing on trophic interactions among species. The collection of food web data for different types of ecosystems across biogeographical gradients is key to advance this research agenda. Further, considering food web interactions as a selection pressure that drives or disrupts ecogeographical rules has the potential to address both mechanisms of and deviations from these macroecological relationships. For these reasons, further integration of macroecology and food webs will help ecologists better understand the assembly, maintenance and change of ecosystems across space and time.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151318/1/geb12925_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151318/2/geb12925.pd

    Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    Get PDF
    Food webs, networks of feeding relationships among organisms, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. Despite long-standing interest in the compartmental structure of food webs, past network analyses of food webs have been constrained by a standard definition of compartments, or modules, that requires many links within compartments and few links between them. Empirical analyses have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure in food webs using a flexible definition of a group that can describe both functional roles and standard compartments. The Serengeti ecosystem provides an opportunity to examine structure in a newly compiled food web that includes species-level resolution among plants, allowing us to address whether groups in the food web correspond to tightly-connected compartments or functional groups, and whether network structure reflects spatial or trophic organization, or a combination of the two. We have compiled the major mammalian and plant components of the Serengeti food web from published literature, and we infer its group structure using our method. We find that network structure corresponds to spatially distinct plant groups coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial patterns, in contrast to the standard compartments typically identified in ecological networks. From data consisting only of nodes and links, the group structure that emerges supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence.Comment: 28 pages, 6 figures (+ 3 supporting), 2 tables (+ 4 supporting

    Evolving Clustered Random Networks

    Get PDF
    We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks
    corecore