19,352 research outputs found

    Superparamagnetic particles in ZSM-5-type ferrisilicates

    Get PDF
    As-synthesized, low iron content, ferrisilicates of ZSM-5-type contain well-separated Fe(III) ions in a tetrahedral environment and display paramagnetic behavior. After hydrothermal treatment, the iron ions are partially extracted from the framework, generating nanosize iron oxide or oxyhydroxide ferrimagnetic particles. This process has been studied by transmission electron microscopy (TEM), Mossbauer spectroscopy, magnetic ac susceptibility (chi(ac)), and field dependent magnetization, on samples containing up to 6.7 wt. % Fe. The experiments evidence the growth of nonaggregated particles, with a typical size around 3 nm, presumably located at the surface of the ferrisilicate crystallites, From a thorough granulometric analysis involving TEM and chi(ac) data, it is concluded that, in the range from 1.5 to 4.6 wt. % Fe, the particle size distributions are significantly independent of the iron content

    Global Chassis Control System Using Suspension, Steering, and Braking Subsystems

    Get PDF
    A novel Global Chassis Control (GCC) system based on a multilayer architecture with three levels: top: decision layer, middle: control layer, and bottom: system layer is presented. The main contribution of this work is the development of a data-based classification and coordination algorithm, into a single control problem. Based on a clustering technique, the decision layer classifies the current driving condition. Afterwards, heuristic rules are used to coordinate the performance of the considered vehicle subsystems (suspension, steering, and braking) using local controllers hosted in the control layer. The control allocation system uses fuzzy logic controllers. The performance of the proposed GCC system was evaluated under different standard tests. Simulation results illustrate the effectiveness of the proposed system compared to an uncontrolled vehicle and a vehicle with a noncoordinated control. The proposed system decreases by 14% the braking distance in the hard braking test with respect to the uncontrolled vehicle, the roll and yaw movements are reduced by 10% and 12%, respectively, in the Double Line Change test, and the oscillations caused by load transfer are reduced by 7% in a cornering situation

    EURONU WP6 2009 yearly report: Update of the physics potential of Nufact, superbeams and betabeams

    Full text link
    Many studies in the last ten years have shown that we can measure the unknown angle theta13, discover leptonic CP violation and determine the neutrino hierarchy in more precise neutrino oscillation experiments, searching for the subleading channel nue -> numu in the atmospheric range. In this first report of WP6 activities the following new results are reviewed: (1) Re-evaluation of the physics reach of the upcoming generation of experiments to measure theta13 and delta; (2) New tools to explore a larger parameter space as needed beyond the standard scenario; (3) Neutrino Factory: (a) evaluation of the physics reach of a Nufact regards sterile neutrinos; (b) evaluation of the physics reach of a Nufact as regards non-standard interactions; (c) evaluation of the physics reach of a Nufact as regards violation of unitarity; (d) critical assessment on long baseline tau-detection at Nufact; (e) new physics searches at a near detector in a Nufact; (4) Beta-beams: (a) choice of ions and location for a gamma = 100 CERN-based beta-beam; (b) re-evaluation of atmospheric neutrino background for the gamma = 100 beta-beam scenario; (c) study of a two baseline beta-beam; (d) measuring absolute neutrino mass with beta-beams; (e) progress on monochromatic beta-beams; (5) Update of the physics potential of the SPL super-beam. Eventually, we present an updated comparison of the sensitivity to theta13, delta and the neutrino mass hierarchy of several of the different proposed facilities.Comment: 2009 Yearly report of the Working Package 6 (Physics) of the EUROnu FP7 EU project. 55 pages, 21 figures

    Automatic Configuration of Multi-Agent Model Predictive Controllers based on Semantic Graph World Models

    Full text link
    We propose a shared semantic map architecture to construct and configure Model Predictive Controllers (MPC) dynamically, that solve navigation problems for multiple robotic agents sharing parts of the same environment. The navigation task is represented as a sequence of semantically labeled areas in the map, that must be traversed sequentially, i.e. a route. Each semantic label represents one or more constraints on the robots' motion behaviour in that area. The advantages of this approach are: (i) an MPC-based motion controller in each individual robot can be (re-)configured, at runtime, with the locally and temporally relevant parameters; (ii) the application can influence, also at runtime, the navigation behaviour of the robots, just by adapting the semantic labels; and (iii) the robots can reason about their need for coordination, through analyzing over which horizon in time and space their routes overlap. The paper provides simulations of various representative situations, showing that the approach of runtime configuration of the MPC drastically decreases computation time, while retaining task execution performance similar to an approach in which each robot always includes all other robots in its MPC computations

    Impaired Motion Processing in Schizophrenia and the Attenuated Psychosis Syndrome : Etiological and Clinical Implications

    Get PDF
    The authors thank Gail Silipo, M.A. for assistance in subject recruitment, Raj Sangoi (RT)(R)(MR) and Caxia Hu, M.S., for assistance in MRI scanning and Isabel and Herb Stusser for their generous support. This research was supported by NIMH grant MH084031 (MJH) DA03383 (DCJ).Peer reviewedPostprin

    Transcriptional dissection of pancreatic tumors engrafted in mice.

    Get PDF
    BACKGROUND: Engraftment of primary pancreas ductal adenocarcinomas (PDAC) in mice to generate patient-derived xenograft (PDX) models is a promising platform for biological and therapeutic studies in this disease. However, these models are still incompletely characterized. Here, we measured the impact of the murine tumor environment on the gene expression of the engrafted human tumoral cells. METHODS: We have analyzed gene expression profiles from 35 new PDX models and compared them with previously published microarray data of 18 PDX models, 53 primary tumors and 41 cell lines from PDAC. The results obtained in the PDAC system were further compared with public available microarray data from 42 PDX models, 108 primary tumors and 32 cell lines from hepatocellular carcinoma (HCC). We developed a robust analysis protocol to explore the gene expression space. In addition, we completed the analysis with a functional characterization of PDX models, including if changes were caused by murine environment or by serial passing. RESULTS: Our results showed that PDX models derived from PDAC, or HCC, were clearly different to the cell lines derived from the same cancer tissues. Indeed, PDAC- and HCC-derived cell lines are indistinguishable from each other based on their gene expression profiles. In contrast, the transcriptomes of PDAC and HCC PDX models can be separated into two different groups that share some partial similarity with their corresponding original primary tumors. Our results point to the lack of human stromal involvement in PDXs as a major factor contributing to their differences from the original primary tumors. The main functional differences between pancreatic PDX models and human PDAC are the lower expression of genes involved in pathways related to extracellular matrix and hemostasis and the up- regulation of cell cycle genes. Importantly, most of these differences are detected in the first passages after the tumor engraftment. CONCLUSIONS: Our results suggest that PDX models of PDAC and HCC retain, to some extent, a gene expression memory of the original primary tumors, while this pattern is not detected in conventional cancer cell lines. Expression changes in PDXs are mainly related to pathways reflecting the lack of human infiltrating cells and the adaptation to a new environment. We also provide evidence of the stability of gene expression patterns over subsequent passages, indicating early phases of the adaptation process

    Intraoperative goal directed hemodynamic therapy in noncardiac surgery: a systematic review and meta-analysis

    Get PDF
    Background: The goal directed hemodynamic therapy is an approach focused on the use of cardiac output and related parameters as end-points for fluids and drugs to optimize tissue perfusion and oxygen delivery. Primary aim: To determine the effects of intraoperative goal directed hemodynamic therapy on postoperative complications rates. Methods: A meta-analysis was carried out of the effects of goal directed hemodynamic therapy in adult noncardiac surgery on postoperative complications and mortality using Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. A systematic search was performed in Medline PubMed, Embase, and the Cochrane Library (last update, October 2014). Inclusion criteria were randomized clinical trials in which intraoperative goal directed hemodynamic therapy was compared to conventional fluid management in noncardiac surgery. Exclusion criteria were trauma and pediatric surgery studies and that using pulmonary artery catheter. End-points were postoperative complications (primary) and mortality (secondary). Those studies that fulfilled the entry criteria were examined in full and subjected to quantifiable analysis, predefined subgroup analysis (stratified by type of monitor, therapy, and hemodynamic goal), and predefined sensitivity analysis. Results: 51 RCTs were initially identified, 24 fulfilling the inclusion criteria. 5 randomized clinical trials were added by manual search, resulting in 29 randomized clinical trials in the final analysis, including 2654 patients. A significant reduction in complications for goal directed hemodynamic therapy was observed (RR: 0.70, 95% CI: 0.62-0.79, p < 0.001). No significant decrease in mortality was achieved (RR: 0.76, 95% CI: 0.45-1.28, p = 0.30). Quality sensitive analyses confirmed the main overall results. Conclusions: Intraoperative goal directed hemodynamic therapy with minimally invasive monitoring decreases postoperative complications in noncardiac surgery, although it was not able to show a significant decrease in mortality rate
    corecore