19 research outputs found

    A Back-reaction Induced Lower Bound on the Tensor-to-Scalar Ratio

    Full text link
    There are large classes of inflationary models, particularly popular in the context of string theory and brane world approaches to inflation, in which the ratio of linearized tensor to scalar metric fluctuations is very small. In such models, however, gravitational waves produced by scalar modes cannot be neglected. We derive the lower bound on the tensor-to-scalar ratio by considering the back-reaction of the scalar perturbations as a source of gravitational waves. These results show that no cosmological model that is compatible with a metric scalar amplitude of ≈10−5\approx 10^{-5} can have a ratio of the tensor to scalar power spectra less than ≈10−8\approx 10^{-8} at recombination and that higher-order terms leads to logarithmic growth for r during radiation domination. Our lower bound also applies to non-inflationary models which produce an almost scale-invariant spectrum of coherent super-Hubble scale metric fluctuations.Comment: 5 pages, version 3, minor changes from version

    The Effects of Gravitational Back-Reaction on Cosmological Perturbations

    Full text link
    Because of the non-linearity of the Einstein equations, the cosmological fluctuations which are generated during inflation on a wide range of wavelengths do not evolve independently. In particular, to second order in perturbation theory, the first order fluctuations back-react both on the background geometry and on the perturbations themselves. I this paper, the gravitational back-reaction of long wavelength (super-Hubble) scalar metric fluctuations on the perturbations themselves is investigated for a large class of inflationary models. Specifically, the equations describing the evolution of long wavelength cosmological metric and matter perturbations in an inflationary universe are solved to second order in both the amplitude of the perturbations and in the slow roll expansion parameter. Assuming that the linear fluctuations have random phases, we show that the fractional correction to the power spectrum due to the leading infrared back-reaction terms does not change the shape of the spectrum. The amplitude of the effect is suppressed by the product of the inflationary slow-roll parameter and the amplitude of the linear power spectrum. The non-gaussianity of the spectrum induced by back-reaction is commented upon.Comment: 9 page

    String Gas Cosmology: Progress and Problems

    Full text link
    String Gas Cosmology is a model of the evolution of the very early universe based on fundamental principles and key new degrees of freedom of string theory which are different from those of point particle field theories. In String Gas Cosmology the universe starts in a quasi-static Hagedorn phase during which space is filled with a gas of highly excited string states. Thermal fluctuations of this string gas lead to an almost scale-invariant spectrum of curvature fluctuations. Thus, String Gas Cosmology is an alternative to cosmological inflation as a theory for the origin of structure in the universe. This short review focuses on the building blocks of the model, the predictions for late time cosmology, and the main problems which the model faces.Comment: 17 pages, 4 figures, invited short review for the Special Issue of CQG on String Cosmology, typo correcte

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    A rule of thumb for cosmological backreaction

    Full text link
    In the context of second order perturbation theory, cosmological backreaction is seen to rescale both time and the scale factor. The issue of the homogeneous limit of long-wavelength perturbations is addressed and backreaction is quantified in terms of a gauge-invariant metric function that is the true physical degree of freedom in the homogeneous limit. The time integral of this metric function controls whether backreaction hastens or delays the expansion of the universe. As an example, late-time acceleration of the universe is shown to be inconsistent with a perturbative approach. Any tendency to accelerate the expansion requires negative non-adiabatic pressure fluctuations.Comment: 5 pages, references added, comment clarified in Introductio

    One-loop corrections to the curvature perturbation from inflation

    Full text link
    An estimate of the one-loop correction to the power spectrum of the primordial curvature perturbation is given, assuming it is generated during a phase of single-field, slow-roll inflation. The loop correction splits into two parts, which can be calculated separately: a purely quantum-mechanical contribution which is generated from the interference among quantized field modes around the time when they cross the horizon, and a classical contribution which comes from integrating the effect of field modes which have already passed far beyond the horizon. The loop correction contains logarithms which may invalidate the use of naive perturbation theory for cosmic microwave background (CMB) predictions when the scale associated with the CMB is exponentially different from the scale at which the fundamental theory which governs inflation is formulated.Comment: 28 pages, uses feynmp.sty and ioplatex journal style. v2: supersedes version published in JCAP. Some corrections and refinements to the discussion and conclusions. v3: Corrects misidentification of quantum correction with an IR effect. Improvements to the discussio

    Cosmological Backreaction from Perturbations

    Full text link
    We reformulate the averaged Einstein equations in a form suitable for use with Newtonian gauge linear perturbation theory and track the size of the modifications to standard Robertson-Walker evolution on the largest scales as a function of redshift for both Einstein de-Sitter and Lambda CDM cosmologies. In both cases the effective energy density arising from linear perturbations is of the order of 10^-5 the matter density, as would be expected, with an effective equation of state w ~ -1/19. Employing a modified Halofit code to extend our results to quasilinear scales, we find that, while larger, the deviations from Robertson-Walker behaviour remain of the order of 10^-5.Comment: 15 pages, 8 figures; replaced by version accepted by JCA

    Accelerated expansion from structure formation

    Get PDF
    We discuss the physics of backreaction-driven accelerated expansion. Using the exact equations for the behaviour of averages in dust universes, we explain how large-scale smoothness does not imply that the effect of inhomogeneity and anisotropy on the expansion rate is small. We demonstrate with an analytical toy model how gravitational collapse can lead to acceleration. We find that the conjecture of the accelerated expansion being due to structure formation is in agreement with the general observational picture of structures in the universe, and more quantitative work is needed to make a detailed comparison.Comment: 44 pages, 1 figure. Expanded treatment of topics from the Gravity Research Foundation contest essay astro-ph/0605632. v2: Added references, clarified wordings. v3: Published version. Minor changes and corrections, added a referenc
    corecore