4 research outputs found

    Cisplatin inhibits frequency and suppressive activity of monocytic myeloid-derived suppressor cells in cancer patients

    No full text
    Cancer immunotherapies have induced long-lasting responses in cancer patients including those with melanoma and head and neck squamous cell carcinoma (HNSCC). However, the majority of treated patients does not achieve clinical benefit from immunotherapy because of systemic tumor-induced immunosuppression. Monocytic myeloid-derived suppressor cells (M-MDSCs) are implicated as key players in inhibiting anti-tumor immune responses and their frequencies are closely associated with tumor progression. Tumor-derived signals, including signaling via STAT3-COX-2, induce the transformation of monocytic precursors into suppressive M-MDSCs. In a retrospective assessment, we observed that survival of melanoma patients undergoing dendritic cell vaccination was negatively associated with blood M-MDSC levels. Previously, it was shown that platinum-based chemotherapeutics inhibit STAT signaling. Here, we show that cisplatin and oxaliplatin treatment interfere with the development of M-MDSCs, potentially synergizing with cancer immunotherapy. In vitro, subclinical doses of platinum-based drugs prevented the generation of COX-2(+) M-MDSCs induced by tumor cells from melanoma patients. This was confirmed in HNSCC patients where intravenous cisplatin treatment drastically lowered M-MDSC frequency while monocyte levels remained stable. In treated patients, expression of COX-2 and arginase-1 in M-MDSCs was significantly decreased after two rounds of cisplatin, indicating inhibition of STAT3 signaling. In line, the capacity of M-MDSCs to inhibit activated T cell responses ex vivo was significantly decreased after patients received cisplatin. These results show that platinum-based chemotherapeutics inhibit the expansion and suppressive activity of M-MDSCs in vitro and in cancer patients. Therefore, platinum-based drugs have the potential to enhance response rates of immunotherapy by overcoming M-MDSC-mediated immunosuppression

    Immunological responses to adjuvant vaccination with combined CD1c+ myeloid and plasmacytoid dendritic cells in stage III melanoma patients

    No full text
    We evaluated the immunological responses of lymph-node involved (stage III) melanoma patients to adjuvant dendritic cell vaccination with subsets of naturally occurring dendritic cells (nDCs). Fifteen patients with completely resected stage III melanoma were randomized to receive adjuvant dendritic cell vaccination with CD1c+ myeloid dendritic cells (cDC2s), plasmacytoid dendritic cells (pDCs) or the combination. Immunological response was the primary endpoint and secondary endpoints included safety and survival. In 80% of the patients, antigen-specific CD8+ T cells were detected in skin test-derived T cells and in 55% of patients, antigen-specific CD8+ T cells were detectable in peripheral blood. Functional interferon-γ-producing T cells were found in the skin test of 64% of the patients. Production of nDC vaccines meeting release criteria was feasible for all patients. Vaccination only induced grade 1–2 adverse events, mainly consisting of fatigue. In conclusion, adjuvant dendritic cell vaccination with cDC2s and/or pDCs is feasible, safe and induced immunological responses in the majority of stage III melanoma patients

    Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial

    Get PDF
    Abstract Autologous natural dendritic cells (nDCs) treatment can induce tumor-specific immune responses and clinical responses in cancer patients. In this phase III clinical trial (NCT02993315), 148 patients with resected stage IIIB/C melanoma were randomized to adjuvant treatment with nDCs (n = 99) or placebo (n = 49). Active treatment consisted of intranodally injected autologous CD1c+ conventional and plasmacytoid DCs loaded with tumor antigens. The primary endpoint was the 2-year recurrence-free survival (RFS) rate, whereas the secondary endpoints included median RFS, 2-year and median overall survival, adverse event profile, and immunological response The 2-year RFS rate was 36.8% in the nDC treatment group and 46.9% in the control group (p = 0.31). Median RFS was 12.7 months vs 19.9 months, respectively (hazard ratio 1.25; 90% CI: 0.88−1.79; p = 0.29). Median overall survival was not reached in both treatment groups (hazard ratio 1.32; 90% CI: 0.73−2.38; p = 0.44). Grade 3−4 study-related adverse events occurred in 5% and 6% of patients. Functional antigen-specific T cell responses could be detected in 67.1% of patients tested in the nDC treatment group vs 3.8% of patients tested in the control group (p < 0.001). In conclusion, while adjuvant nDC treatment in stage IIIB/C melanoma patients generated specific immune responses and was well tolerated, no benefit in RFS was observed
    corecore