14 research outputs found

    Microtubules get the chop

    No full text

    Cytoplasmic acidification with butyric acid does not alter the ionic conductivity of plasmodesmata

    No full text
    The original publication can be found at www.springerlink.comThe effect of lowering cytoplasmic pH on the ionic conductivity of higher-plant plasmodesmata was investigated with corn (Zea mays L. cv. Black Mexican Sweet) suspension culture cells. Exposure to butyric acid decreased the cytoplasmic pH by 0.8 units. Intercellular communication was monitored by electrophysiological techniques that allowed the measurement of membrane resistances of sister cells and the electrical resistance of the plasmodesmata connecting them. The decrease in cytoplasmic pH did not affect the resistance of plasmodesmata, despite the fact that the butyric acid treatment more than doubled the concentration of cytoplasmic calcium. This is discussed in light of previous findings that increases in cytoplasmic calcium increase the electrical resistance of plasmodesmata.T. L. Holdaway-Clarke, N. A. Walker, R. J. Reid, P. K. Hepler and R. L. Overal

    Evidence of Diel Vertical Migration in Mnemiopsis leidyi

    Get PDF
    The vertical distribution and migration of plankton organisms may have a large impact on their horizontal dispersal and distribution, and consequently on trophic interactions. In this study we used video-net profiling to describe the fine scale vertical distribution of Mnemiopsis leidyi in the Kattegat and Baltic Proper. Potential diel vertical migration was also investigated by frequent filming during a 24-hour cycle at two contrasting locations with respect to salinity stratification. The video profiles revealed a pronounced diel vertical migration at one of the locations. However, only the small and medium size classes migrated, on average 0.85 m h(-1), corresponding to a total migration distance of 10 m during 12 h. Larger individuals (with well developed lobes, approx. >27 mm) stay on average in the same depth interval at all times. Biophysical data suggest that migrating individuals likely responded to light, and avoided irradiance levels higher than approx. 10 mu mol quanta m(-2) s(-1). We suggest that strong stratification caused by low surface salinity seemed to prohibit vertical migration
    corecore