43 research outputs found

    GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers.

    Get PDF
    Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy

    The transcriptional landscape of hematopoietic stem cell ontogeny

    Get PDF
    Transcriptome analysis of adult hematopoietic stem cells (HSCs) and their progeny has revealed mechanisms of blood differentiation and leukemogenesis, but a similar analysis of HSC development is lacking. Here, we acquired the transcriptomes of developing HSCs purified from >2,500 murine embryos and adult mice. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs undergoing specification, and definitive HSCs. We applied a network-biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development and functionally validated candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knockdown in zebrafish embryos. Moreover, we found that HSCs from in vitro differentiated embryonic stem cells closely resemble definitive HSCs, yet lack a Notch-signaling signature, likely accounting for their defective lymphopoiesis. Our analysis and web resource will enhance efforts to identify regulators of HSC ontogeny and facilitate the engineering of hematopoietic specification

    Endothelial-to-hematopoietic transition: Notch-ing vessels into blood

    No full text
    During development, hematopoietic stem cells (HSCs) are formed in a temporally and spatially restricted manner, arising from specialized endothelial cells (ECs) in the ventral wall of the dorsal aorta within the evolutionary conserved aorta-gonad-mesonephros region. Our understanding of the processes regulating the birth of HSCs from ECs has been recently advanced by comprehensive molecular analyses of developing murine hematopoietic cell populations complemented by studies in the zebrafish model, with the latter offering unique advantages for genetic studies and direct in vivo visualization of HSC emergence. Here, we provide a concise review of the current knowledge and recent advances regarding the cellular origin and molecular regulation of HSC development, with particular focus on the process of endothelial-to-hematopoietic transition and its primary regulator, the Notch signaling pathway
    corecore