26 research outputs found

    From Single-SNP to Wide-Locus: Genome-Wide Association Studies Identifying Functionally Related Genes and Intragenic Regions in Small Sample Studies

    Get PDF
    Background: Genome Wide Association Studies (GWAS) have had limited success when applied to complex diseases. Analyzing SNPs individually requires several large studies to integrate the often divergent results. In the presence of epistasis, multivariate approaches based on the linear model (including stepwise logistic regression) often have low sensitivity and generate an abundance of artifacts. Methods: Recent advances in distributed and parallel processing spurred methodological advances in non-parametric statistics. U-statistics for multivariate data (μStat) are not confounded by unrealistic assumptions (linearity, independence). Results: By incorporating knowledge about relationships between SNPs, μGWAS (GWAS based on μStat) can identify clusters of genes around biologically relevant pathways and pinpoint functionally relevant regions within these genes. Conclusion: With this computational biostatistics approach increasing power and guarding against artifacts, personalized medicine and comparative effectiveness will advance while subgroup analyses of Phase III trials can now suggest risk factors for adverse events and novel directions for drug development

    Polyspike and Waves Do Not Predict Generalized Tonic-Clonic Seizures in Childhood Absence Epilepsy

    No full text
    About 40% of children with childhood absence epilepsy develop generalized tonic-clonic seizures. It is commonly held that polyspike–wave pattern on the electroencephalogram (EEG) can predict this development of generalized tonic-clonic seizures. However, there is no firm evidence in support of this proposition. To test this assumption, we used survival analysis and compared the incidence of generalized tonic-clonic seizures in 115 patients with childhood absence epilepsy having either isolated 3-Hz spike–wave or coexisting 3 Hz and polyspike–waves and other variables. There was no evidence that polyspike–waves predicted development of generalized tonic-clonic seizures in patients with childhood absence epilepsy. Later age of onset (≥8 years) and family histories of generalized tonic-clonic seizures were the only independent predictors. These results have implications for counseling and in the choice of first-line antiepileptic drugs used for childhood absence epilepsy, especially if valproate is chosen based on the observation of polyspike–waves

    Complex inheritance and parent-of-origin effect in juvenile myoclonic epilepsy

    No full text
    BACKGROUND: Juvenile myoclonic epilepsy (JME) is an idiopathic generalized epilepsy (IGE) with complex inheritance. Previous studies have suggested maternal inheritance and female excess in IGEs but have not been specific for JME. We investigated evidence for maternal inheritance, female excess and patterns of familial seizure risk in a well-characterized sample of JME families. METHODS: We ascertained 89 families through a JME proband and 50 families through a non-JME IGE proband. JME families were divided into those with and without evidence of linkage to the EJM1 susceptibility locus on chromosome 6. We analyzed transmission in 43 multigenerational families, calculated the adjusted sex ratio for JME, and looked for evidence of seizure specific risk in 806 family members. RESULTS: We found evidence for preferential maternal transmission in both EJM1-linked and unlinked families (2.7:1), evidence even more marked when potential selection factors were excluded. The adjusted female: male risk ratio was very high in JME (RR=12.5; 95% CI: 1.9–83.7). Absence seizures in JME probands increased the overall risk of seizures in first degree relatives (15.8% vs. 7.0%, P=0.011), as well as first-degree relatives' specific risk of absence seizures (6% vs. 1.6%, P=0.01), but not myoclonic seizures. CONCLUSIONS: We have confirmed the finding of maternal inheritance in JME, which is not restricted to JME families linked to the EJM1 locus. The striking female excess in JME may relate to anatomical and/or endocrine sexual dimorphism in the brain. Evidence for independent inheritance of absence and myoclonic seizures in JME families reinforces a model in which combinations of loci confer susceptibility to the component seizure types of IGE

    Malic Enzyme 2 May Underlie Susceptibility to Adolescent-Onset Idiopathic Generalized Epilepsy

    No full text
    Idiopathic generalized epilepsy (IGE) is a class of genetically determined, phenotypically related epilepsy syndromes. Linkage analysis identified a chromosome 18 locus predisposing to a number of adolescent-onset IGEs. We report a single-nucleotide polymorphism (SNP) association analysis of the region around the marker locus with the high LOD score. This analysis, which used both case-control and family-based association methods, yielded strong evidence that malic enzyme 2 (ME2) is the gene predisposing to IGE. We also observed association among subgroups of IGE syndromes. An ME2-centered nine-SNP haplotype, when present homozygously, increases the risk for IGE (odds ratio 6.1; 95% confidence interval 2.9–12.7) compared with any other genotype. Both the linkage analysis and the association analysis support recessive inheritance for the locus, which is compatible with the fact that ME2 is an enzyme. ME2 is a genome-coded mitochondrial enzyme that converts malate to pyruvate and is involved in neuronal synthesis of the neurotransmitter γ-aminobutyric acid (GABA). The results suggest that GABA synthesis disruption predisposes to common IGE and that clinical seizures are triggered when mutations at other genes, or perhaps other insults, are present

    Linkage and mutational analysis of CLCN2 in childhood absence epilepsy

    Get PDF
    In order to assess the chloride channel gene CLCN2 as a candidate susceptibility gene for childhood absence epilepsy, parametric and non-parametric linkage analysis was performed in 65 nuclear pedigrees. This provided suggestive evidence for linkage with heterogeneity: NPL score = 2.3, p A. Intra-familial association analysis using the pedigrees and a further 308 parent-child trios showed suggestive evidence for transmission disequilibrium of the G2154C minor allele: AVE-PDT X((1))(2) = 5.17, p A minor allele:X((1))(2) = 7.27, p <0.008, The 65 nuclear pedigrees were screened for three previously identified mutations shown to segregate with a variety of idiopathic generalised epilepsy phenotypes (597insG, IVS2-14del11 and G2144A) but none were found. We conclude that CLCN2 may be a susceptibility locus in a subset of cases of childhood absence epilepsy. (c) 2007 Elsevier B.V. All rights reserved

    Evaluation of CACNA1H in European patients with childhood absence epilepsy

    Get PDF
    CACNA1H was evaluated in a resource of Caucasian European patients with childhood absence epilepsy by linkage analysis and typing of sequence variants previously identified in Chinese patients. Linkage analysis of 44 pedigrees provided no evidence for a locus in the CACNA1H region and none of the Chinese variants were found in 220 unrelated patients. (c) 2006 Elsevier B.V. All rights reserved
    corecore