196 research outputs found

    Non adiabatic features of electron pumping through a quantum dot in the Kondo regime

    Get PDF
    We investigate the behavior of the dc electronic current, Jdc, in an interacting quantum dot driven by two ac local potentials oscillating with a frequency, Omega0, and a phase-lag, phi. We provide analytical functions to describe the fingerprints of the Coulomb interaction in an experimental Jdc vs phi characteristic curve. We show that the Kondo resonance reduces at low temperatures the frequency range for the linear behavior of Jdc in Omega0 to take place and determines the evolution of the dc-current as the temperature increases.Comment: 8 pages, 7 figure

    Interpolative method for transport properties of quantum dots in the Kondo regime

    Full text link
    We present an interpolative method for describing coherent transport through an interacting quantum dot. The idea of the method is to construct an approximate electron self-energy which becomes exact both in the limits of weak and strong coupling to the leads. The validity of the approximation is first checked for the case of a single (spin-degenerate) dot level. A generalization to the multilevel case is then discussed. We present results both for the density of states and the temperature dependent linear conductance showing the transition from the Kondo to the Coulomb blockade regime.Comment: 8 pages, 3 figures, includes lamuphys.sty, submitted to the Proceedings of the XVI Sitges Conference on Statistical Mechanic

    Local density of states on a vibrational quantum dot out of equilibrium

    Full text link
    We calculate the nonequilibrium local density of states on a vibrational quantum dot coupled to two electrodes at T=0 using a numerically exact diagrammatic Monte Carlo method. Our focus is on the interplay between the electron-phonon interaction strength and the bias voltage. We find that the spectral density exhibits a significant voltage dependence if the voltage window includes one or more phonon sidebands. A comparison with well-established approximate approaches indicates that this effect could be attributed to the nonequilibrium distribution of the phonons. Moreover, we discuss the long transient dynamics caused by the electron-phonon coupling.Comment: 9 pages, 11 figure

    General transport properties of superconducting quantum point contacts: a Green functions approach

    Full text link
    We discuss the general transport properties of superconducting quantum point contacts. We show how these properties can be obtained from a microscopic model using nonequilibrium Green function techniques. For the case of a one-channel contact we analyze the response under different biasing conditions: constant applied voltage, current bias and microwave-induced transport. Current fluctuations are also analyzed with particular emphasis on thermal and shot-noise. Finally, the case of superconducting transport through a resonant level is discussed. The calculated properties show a remarkable agreement with the available experimental data from atomic-size contacts measurements. We suggest the possibility of extending this comparison to several other predictions of the theory.Comment: 10 pages, revtex, 8 figures, submitted to a special issue of Superlattices and Microstructure

    Influence of spin filtering and spin mixing on the subgap structure of I-V characteristics in superconducting quantum point contact

    Full text link
    The effect of spin filtering and spin mixing on the dc electric current for voltage biased magnetic quantum point contact with superconducting leads is theoretically studied. The I-V characteristics are calculated for the whole range of spin filtering and spin mixing parameters. It is found that with increasing of spin filtering the subharmonic step structure of the dc electric current, typical for low-transparency junction and junction without considerable spin filtering qualitatively changes. In the lower voltage region and for small enough spin mixing the peak structure arises. When spin mixing increases the peak subgap structure evolves to the step structure. The voltages where subharmonic gap features are located are found to be sensitive to the value of spin filtering. The positions of peaks and steps are calculated analytically and the evolution of the subgap structure from well-known tunnel limit to the large spin filtering case is explained in terms of multiple Andreev reflection (MAR) processes. In particular, it is found that for large spin filtering the subgap feature at eVkeV_k arises from 2kth2k^{\rm th} and (2k±1)th(2k\pm 1)^{\rm th} order MAR processes, while in the tunnel limit the step at eVneV_n is known to result from nthn^{\rm th} order MAR process.Comment: 9 pages, 3 figure

    Long transient dynamics in the Anderson-Holstein model out of equilibrium

    Full text link
    We calculate the time dependent nonequilibrium current through a single level quantum dot strongly coupled to a vibrational mode. The nonequilibrium real time dynamics caused by an instantaneous coupling of the leads to the quantum dot is discussed using an approximate method. The approach, which is specially designed for the strong polaronic regime, is based on the so-called polaron tunneling approximation. Considering different initial dot occupations, we show that a common steady state is reached after times much larger than the typical electron tunneling times due to a polaron blocking effect in the dot charge. A direct comparison is made with numerically exact data, showing good agreement for the time scales accessible by the diagrammatic Monte Carlo simulation method
    • …
    corecore