18 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Global respiratory syncytial virus–related infant community deaths

    Get PDF
    Background Respiratory syncytial virus (RSV) is a leading cause of pediatric death, with >99% of mortality occurring in low- and lower middle-income countries. At least half of RSV-related deaths are estimated to occur in the community, but clinical characteristics of this group of children remain poorly characterized. Methods The RSV Global Online Mortality Database (RSV GOLD), a global registry of under-5 children who have died with RSV-related illness, describes clinical characteristics of children dying of RSV through global data sharing. RSV GOLD acts as a collaborative platform for global deaths, including community mortality studies described in this supplement. We aimed to compare the age distribution of infant deaths <6 months occurring in the community with in-hospital. Results We studied 829 RSV-related deaths <1 year of age from 38 developing countries, including 166 community deaths from 12 countries. There were 629 deaths that occurred <6 months, of which 156 (25%) occurred in the community. Among infants who died before 6 months of age, median age at death in the community (1.5 months; IQR: 0.8−3.3) was lower than in-hospital (2.4 months; IQR: 1.5−4.0; P < .0001). The proportion of neonatal deaths was higher in the community (29%, 46/156) than in-hospital (12%, 57/473, P < 0.0001). Conclusions We observed that children in the community die at a younger age. We expect that maternal vaccination or immunoprophylaxis against RSV will have a larger impact on RSV-related mortality in the community than in-hospital. This case series of RSV-related community deaths, made possible through global data sharing, allowed us to assess the potential impact of future RSV vaccines

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Binding of local anaesthetics to the lipid emulsion Clinoleic™ 20%

    No full text
    Lipid emulsions have been used to treat cardiovascular collapse due to local anaesthetic toxicity. However, there are few data available on the comparative efficiency of the partitioning properties of available lipid emulsions in clinical use. This in vitro study compared the buffering properties of the lipid emulsions Clinoleic (TM) 20% (Baxter, Old Toongabbie, NSW) and Intralipid (R) 20% (Fresenius Kabi, Pymble, NSW) using both bupivacaine (Marcain (R) 0.5%, AstraZeneca, North Ryde, NSW) and ropivacaine (Naropin (R) 1%, AstraZeneca, North Ryde, NSW). The concentration of anaesthetic in buffer before and after mixing with lipid was quantified using chromatographic analysis. Bupivacaine was more effectively bound by the lipid agents, with a 40% reduction in initial concentration. Ropivacaine demonstrated a 20% reduction in concentration with the addition of lipid agents. Importantly, there was no significant difference between Intralipid and Clinoleic in terms of their buffering behaviour, suggesting equivalent binding efficacy

    Evolution of Type 2 Vaccine Derived Poliovirus Lineages. Evidence for Codon-Specific Positive Selection at Three Distinct Locations on Capsid Wall

    No full text
    <div><p>Partial sequences of 110 type 2 poliovirus strains isolated from sewage in Slovakia in 2003–2005, and most probably originating from a single dose of oral poliovirus vaccine, were subjected to a detailed genetic analysis. Evolutionary patterns of these vaccine derived poliovirus strains (SVK-aVDPV2) were compared to those of type 1 and type 3 wild poliovirus (WPV) lineages considered to have a single seed strain origin, respectively. The 102 unique SVK-aVDPV VP1 sequences were monophyletic differing from that of the most likely parental poliovirus type 2/Sabin (PV2 Sabin) by 12.5–15.6%. Judging from this difference and from the rate of accumulation of synonymous transversions during the 22 month observation period, the relevant oral poliovirus vaccine dose had been administered to an unknown recipient more than 12 years earlier. The patterns of nucleotide substitution during the observation period differed from those found in the studied lineages of WPV1 or 3, including a lower transition/transversion (Ts/Tv) bias and strikingly lower Ts/Tv rate ratios at the 2<sup>nd</sup> codon position for both purines and pyrimidines. A relatively low preference of transitions at the 2<sup>nd</sup> codon position was also found in the large set of VP1 sequences of Nigerian circulating (c)VDPV2, as well as in the smaller sets from the Hispaniola cVDPV1 and Egypt cVDPV2 outbreaks, and among aVDPV1and aVDPV2 strains recently isolated from sewage in Finland. Codon-wise analysis of synonymous versus non-synonymous substitution rates in the VP1 sequences suggested that in five codons, those coding for amino acids at sites 24, 144, 147, 221 and 222, there may have been positive selection during the observation period. We conclude that pattern of poliovirus VP1 evolution in prolonged infection may differ from that found in WPV epidemics. Further studies on sufficiently large independent datasets are needed to confirm this suggestion and to reveal its potential significance.</p></div
    corecore