22 research outputs found
Does prohibitin expression regulate sperm mitochondrial membrane potential, sperm motility, and male fertility?
Prohibitin (PHB) is a highly conserved major sperm mitochondrial membrane protein whose absence in somatic cells is associated with mitochondrial membrane depolarization and increased generation of reactive oxygen species (ROS). Our recent findings suggest that high levels of oxidants in human semen may contribute to male infertility and that sperm motility could be the earliest and most sensitive indicator of oxidative damage. Based on PHB's roles in mitochondrial sub-compartmentalization and respiratory chain assembly, we examine sperm PHB expression and mitochondrial membrane potential (MITO) in infertile men with poor sperm motility (asthenospermia, A) and/or low sperm concentrations (oligoasthenospermia, OA). Here, we demonstrate that MITO is significantly lower in sperm from A and OA subjects than in normospermic (N) subjects; the decrease is more severe for OA than for A subjects. PHB expression is also significantly lower in sperm from A and OA subjects. Significantly positive correlations are found among PHB expression, MITO, and sperm motility in normospermic, asthenospermic, and oligoasthenospermic subjects. Collectively, our observations lead to the hypothesis that PHB expression is an indicator of sperm quality in infertile men, and that it regulates sperm motility via an alteration in MITO and increased ROS levels. © Copyright 2012, Mary Ann Liebert, Inc.published_or_final_versio
Investigating the Glycating Effects of Glucose, Glyoxal and Methylglyoxal on Human Sperm
Glycation is the non-enzymatic reaction between reducing sugars, such as glucose, and proteins, lipids or nucleic acids, producing Advanced Glycation End (AGE) products. AGEs, produced during natural senescence as well as through lifestyle factors such as diet and smoking, are key pathogenic compounds in the initiation and progression of diabetes. Importantly, many of these factors and conditions also have influence on male fertility, affecting sperm count and semen quality, contributing to the decreasing trend in male fertility. This study investigated the impact of AGEs on sperm damage. In vitro sperm glycation assays were used to determine the levels and localization of the potent AGE compound, carboxymethyl-lysine (CML) in response to treatment with the glycating compounds glucose, glyoxal and methylglyoxal. Sperm function assays were then used to assess the effects of glycation on motility and hyaluronan binding, and levels of oxidative DNA damage were analyzed through measurement of the marker, 8-oxoguanine. Results showed that glyoxal, but not glucose or methylglyoxal, induced significant increases in CML levels on sperm and this correlated with an increase in 8-oxoguanine. Immunocytochemistry revealed that AGEs were located on all parts of the sperm cell and most prominently on the head region. Sperm motility and hyaluronidase activity were not adversely affected by glycation. Together, the observed detrimental effects of the increased levels of AGE on DNA integrity, without an effect on motility and hyaluronidase activity, suggest that sperm may retain some fertilizing capacity under these adverse conditions
Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility
BACKGROUND: TEX101 is a cell membrane protein exclusively expressed by testicular germ cells and shed into seminal plasma. We previously verified human TEX101 as a biomarker for the differential diagnosis of azoospermia, and developed a first-of-its-kind TEX101 ELISA. To demonstrate the clinical utility of TEX101, in this work we aimed at evaluating ELISA performance in a large population of fertile, subfertile, and infertile men. METHODS: Mass spectrometry, size-exclusion chromatography, ultracentrifugation, and immunohistochemistry were used to characterize TEX101 protein as an analyte in seminal plasma. Using the optimized protocol for seminal plasma pretreatment, TEX101 was measured by ELISA in 805 seminal plasma samples. RESULTS: We demonstrated that TEX101 was present in seminal plasma mostly in a free soluble form and that its small fraction was associated with seminal microvesicles. TEX101 median values were estimated in healthy, fertile pre-vasectomy men (5436 ng/mL, N = 64) and in patients with unexplained infertility (4967 ng/mL, N = 277), oligospermia (450 ng/mL, N = 270), and azoospermia (0.5 ng/mL, N = 137). Fertile post-vasectomy men (N = 57) and patients with Sertoli cell-only syndrome (N = 13) and obstructive azoospermia (N = 36) had undetectable levels of TEX101 (≤0.5 ng/mL). A cut-off value of 0.9 ng/mL provided 100% sensitivity at 100% specificity for distinguishing pre- and post-vasectomy men. The combination of a concentration of TEX101 > 0.9 ng/mL and epididymis-specific protein ECM1 > 2.3 μg/mL provided 81% sensitivity at 100% specificity for differentiating between non-obstructive and obstructive azoospermia, thus eliminating the majority of diagnostic testicular biopsies. In addition, a cut-off value of ≥0.6 ng/mL provided 73% sensitivity at 64% specificity for predicting sperm or spermatid retrieval in patients with non-obstructive azoospermia. CONCLUSIONS: We demonstrated the clinical utility of TEX101 ELISA as a test to evaluate vasectomy success, to stratify azoospermia forms, and to better select patients for sperm retrieval. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-017-0817-5) contains supplementary material, which is available to authorized users
Compartmentalization of Proteins in Epididymosomes Coordinates the Association of Epididymal Proteins with the Different Functional Structures of Bovine Spermatozoa1
Epididymosomes are small membranous vesicles secreted by epithelial cells within the luminal compartment of the epididymis. In bovine, many proteins are associated with epididymosomes, and some of them, such as the glycosylphosphatidylinositol (GPI)-anchored protein P25b, macrophage migration inhibitory factor (MIF), and aldose reductase (AKR1B1), are transferred to spermatozoa during the epididymal maturation process. P25b is associated with detergent-resistant membrane (DRM) domains of epididymal spermatozoa, whereas MIF and AKR1B1 are cytosolic proteins associated with detergent-soluble fractions. In this study, we tested the hypothesis that DRM domains are also present in the epididymosomes and that P25b DRM-associated proteins in these vesicles are transferred to the DRMs of spermatozoa. The presence of DRMs in epididymosomes was confirmed by their insolubility in cold Triton X-100 and their low buoyant density in sucrose gradient. Furthermore, DRMs isolated from epididymosomes are characterized by the exclusive presence of ganglioside GM1 and by high levels of cholesterol and sphingomyelin. Biochemical analysis indicated that P25b is linked to DRM in epididymosomes, whereas MIF and AKR1B1 are completely excluded from these membrane domains. Proteolytic treatment of epididymosomes and immunoblotting studies showed that P25b is affected by trypsin or pronase proteolysis. In contrast, MIF and AKR1B1 are not degraded by proteases, suggesting that they are localized within epididymosomes. Interaction studies between epididymosomes and epididymal spermatozoa demonstrated that P25b is transferred from the DRM of epididymosomes to the DRM of the caput epididymal spermatozoa as a GPI-anchored protein. Together, these data suggest that specific localization and compartmentalization of proteins in the epididymosomes coordinate the association of epididymal proteins with the different functional structures of spermatozoa
Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome
Recent evidence has shown that the sperm epigenome is vulnerable to dynamic modifications arising from a variety of paternal environment exposures and that this legacy can serve as an important determinant of intergenerational inheritance. It has been postulated that such exchange is communicated to maturing spermatozoa via the transfer of small non-protein-coding RNAs (sRNAs) in a mechanism mediated by epididymosomes; small membrane bound vesicles released by the soma of the male reproductive tract (epididymis). Here we confirm that mouse epididymosomes encapsulate an impressive cargo of >350 microRNAs (miRNAs), a developmentally important sRNA class, the majority (~60%) of which are also represented by the miRNA signature of spermatozoa. This includes >50 miRNAs that were found exclusively in epididymal sperm and epididymosomes, but not in the surrounding soma. We also documented substantial changes in the epididymosome miRNA cargo, including significant fold changes in almost half of the miRNAs along the length of the epididymis. Finally, we provide the first direct evidence for the transfer of several prominent miRNA species between mouse epididymosomes and spermatozoa to afford novel insight into a mechanism of intercellular communication by which the sRNA payload of sperm can be selectively modified during their post-testicular maturation