187 research outputs found

    Would You Like a GDP with Your Coffee?

    Get PDF
    The holistic economics studies the economy as an integrated, unique object with its own motivation and global resources. It is also necessary to find out from this point of view the global characteristic of this object. And this is just the analogy with the GDP, constructed upon quantities with what the holistic economics works. This characteristic describes activity of parts of the control structure of the economy aiming to the removal of the tension in controlling areas. The submitting paper forms this characteristic on the basis of a study of stock markets. When at the end a comparison of this holistic characteristic with a standard quarterly GDP is made, a very good compliance results. It has double meaning. Firstly, a characteristic because of stemming from the development of stock markets is to the disposal on every day basis, and thus it is possible to get an analogy of the GDP on this quite different time basis. It allows an economy control in a quite different quality.And secondly, it is a confirmation of the credibility of the holistic economics itself. Its global characteristic, resp. one of them, tightly corresponds with a global characteristic of the standard, classical macro-economics

    Heterostructures for High Performance Devices

    Get PDF
    Contains an introduction, reports on thirteen research projects and a list of publications.Charles S. Draper Laboratory Contract DL-H-418483DARPA/NCIPT Subcontract 542383Joint Services Electronics Program Contract DAAL03-89-C-0001IBM Corporation FellowshipNational Science Foundation FellowshipVitesse SemiconductorAT&T Bell LaboratoriesHertz Foundation FellowshipNational Science FoundationTRWBelgian American Education Foundation (BAEF) FellowshipNational Science Foundation Grant ECS 90-08485Harvard University. Division of Applied PhysicsAT&T Bell Laboratories FellowshipNational Science Foundation Grant ECS 90-0774

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Heterostructures for High Performance Devices

    Get PDF
    Contains table of contents for Part I, table of contents for Section 1, an introduction, reports on eighteen research projects and a list of publications.Charles S. Draper Laboratories Contract DL-H-418483DARPA/NCIPTJoint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001IBM Corporation FellowshipNational Science Foundation FellowshipVitesse SemiconductorGTE LaboratoriesCharles S. Draper LaboratoriesElectronics and Telecommunications Research Institute (ETRI) FellowshipNational Science Foundation/Northeastern UniversityTRW SystemsU.S. Army Research OfficeNational Science FoundationAT&T Bell Laboratories FellowshipNational Science Foundation Grant ECS 90-0774
    • 

    corecore