65 research outputs found

    Fructose 1,6-Bisphosphatase Form B from Synechococcus leopoliensis

    Full text link

    Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases

    Get PDF
    AbstractGlucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) are required for normal starch metabolism. We analysed starch phosphorylation in Arabidopsis wild-type plants and mutants lacking either GWD or PWD using 31P NMR. Phosphorylation at both C6- and C3-positions of glucose moieties in starch was drastically decreased in GWD-deficient mutants. In starch from PWD-deficient plants C3-bound phosphate was reduced to levels close to the detection limit. The latter result contrasts with previous reports according to which GWD phosphorylates both C6- and C3-positions. In these studies, phosphorylation had been analysed by HPLC of acid-hydrolysed glucans. We now show that maltose-6-phosphate, a product of incomplete starch hydrolysis, co-eluted with glucose-3-phosphate under the chromatographic conditions applied. Re-examination of the specificity of the dikinases using an improved method demonstrates that C6- and C3-phosphorylation is selectively catalysed by GWD and PWD, respectively

    Molecular regulation of starch metabolism

    Get PDF
    Starch is the second most abundant biomass next to cellulose and composed of amylopectin, a highly branched glucan, and amylose, an essentially linear glucan. The former and the latter glucans usually account for approximately 65–85% and 15–35% of the total starch, respectively. During the last three decades the basic scheme of starch biosynthesis has been established based on numerous biochemical, genetic, and molecular biological approaches worldwide using a variety of higher plants and algae. It is well known that after the synthesis of ADPglucose by ADPglucose pyrophosphorylase (AGPase), amylopectin’s fne structure is formed by concerted actions of multiple isozymes from three classes of enzymes, starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE), and that amylose is synthesized by mainly granule-bound SS (GBSS). In addition to the roles of starch biosynthetic isozymes, the contributions of α-glucan phosphorylase, α-glucan, water dikinase, phosphoglucan, water dikinase, pyruvate, phosphate dikinase, α-amylase, and carbohydrate-binding modules have been documented. Information on the whole genome sequence and omics analyses are available in main plant species. All these results revealed the roles of key biosynthetic isozymes of SS, GBSS, BE, and DBE and subunits of AGPase to starch biosynthesis, and presently we know to what extent the fne structure of starch molecules and the internal structure and physicochemical properties of starch granules as well as starch amounts can be modifed in accord with the activity levels of these isozymes and subunits. However, in spite of numerous past investigations, the regulation of the network of enzymatic reactions has not been fully understood. To resolve the complex mechanisms, we need to examine several topics such as redundancy and supplementary functions of multiple isozymes, enzymeenzyme interaction(s), and regulatory factors controlling catalytic and specific activities of individual isozymes, temporal and spatial co-expression of multiple isozymes, post-translational modifcation of enzymatic capacities such as phosphorylation, glycosylation, and redox state. There are still lots of uncertainties in the understanding of the initiation of starch biosynthesis.Fil: Nakamura, Yasunori. Akita Prefectural University; JapónFil: Steup, Martin. Universitat Potsdam; AlemaniaFil: Colleoni, Christophe. Université de Lille; FranciaFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Bao, Jinsong. Zhejiang University; ChinaFil: Fujita, Naoko. University of Guelph; CanadáFil: Tetlow, Ian. University of Guelph; Canad

    Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration

    Get PDF
    Second harmonic generation (SHG) microscopy is employed to study changes in crystalline organization due to altered gene expression and hydration in barley starch granules. SHG intensity and susceptibility ratio values (R’(SHG)) are obtained using reduced Stokes-Mueller polarimetric microscopy. The maximum R’(SHG) values occur at moderate moisture indicating the narrowest orientation distribution of nonlinear dipoles from the cylindrical axis of glucan helices. The maximum SHG intensity occurs at the highest moisture and amylopectin content. These results support the hypothesis that SHG is caused by ordered hydrogen and hydroxyl bond networks which increase with hydration of starch granules

    Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature

    Get PDF
    Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-14C]glucose 1-phosphate, [U-14C]sucrose, [U-14C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-14C]sucrose plus unlabelled equimolar glucose 1-phosphate. 14C-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 14C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-14C]glucose 1-phosphate or adenosine-[U-14C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro 14C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells

    Endosonography With or Without Confirmatory Mediastinoscopy for Resectable Lung Cancer:A Randomized Clinical Trial

    Get PDF
    PURPOSE:Resectable non-small-cell lung cancer (NSCLC) with a high probability of mediastinal nodal involvement requires mediastinal staging by endosonography and, in the absence of nodal metastases, confirmatory mediastinoscopy according to current guidelines. However, randomized data regarding immediate lung tumor resection after systematic endosonography versus additional confirmatory mediastinoscopy before resection are lacking.METHODS:Patients with (suspected) resectable NSCLC and an indication for mediastinal staging after negative systematic endosonography were randomly assigned to immediate lung tumor resection or confirmatory mediastinoscopy followed by tumor resection. The primary outcome in this noninferiority trial (noninferiority margin of 8% that previously showed to not compromise survival, Pnoninferior &lt;.0250) was the presence of unforeseen N2 disease after tumor resection with lymph node dissection. Secondary outcomes were 30-day major morbidity and mortality.RESULTS:Between July 17, 2017, and October 5, 2020, 360 patients were randomly assigned, 178 to immediate lung tumor resection (seven dropouts) and 182 to confirmatory mediastinoscopy first (seven dropouts before and six after mediastinoscopy). Mediastinoscopy detected metastases in 8.0% (14/175; 95% CI, 4.8 to 13.0) of patients. Unforeseen N2 rate after immediate resection (8.8%) was noninferior compared with mediastinoscopy first (7.7%) in both intention-to-treat (Δ, 1.03%; UL 95% CIΔ, 7.2%; Pnoninferior =.0144) and per-protocol analyses (Δ, 0.83%; UL 95% CIΔ, 7.3%; Pnoninferior =.0157). Major morbidity and 30-day mortality was 12.9% after immediate resection versus 15.4% after mediastinoscopy first (P =.4940).CONCLUSION:On the basis of our chosen noninferiority margin in the rate of unforeseen N2, confirmatory mediastinoscopy after negative systematic endosonography can be omitted in patients with resectable NSCLC and an indication for mediastinal staging.</p
    corecore