77,172 research outputs found

    Objective measurement of habitual sedentary behavior in pre-school children: comparison of activPAL with actigraph monitors

    Get PDF
    The Actigraph is well established for measurement of both physical activity and sedentary behavior in children. The activPAL is being used increasingly in children, though with no published evidence on its use in free-living children to date. The present study compared the two monitors in preschool children. Children (n 23) wore both monitors simultaneously during waking hours for 5.6d and 10h/d. Daily mean percentage of time sedentary (nontranslocation of the trunk) was 74.6 (SD 6.8) for the Actigraph and 78.9 (SD 4.3) for activPAL. Daily mean percentage of time physically active (light intensity physical activity plus MVPA) was 25.4 (SD 6.8) for the Actigraph and 21.1 (SD 4.3) for the activPAL. Bland-Altman tests and paired t tests suggested small but statistically significant differences between the two monitors. Actigraph and activPAL estimates of sedentary behaviour and physical activity in young children are similar at a group level

    Temperley-Lieb Stochastic Processes

    Full text link
    We discuss one-dimensional stochastic processes defined through the Temperley-Lieb algebra related to the Q=1 Potts model. For various boundary conditions, we formulate a conjecture relating the probability distribution which describes the stationary state, to the enumeration of a symmetry class of alternating sign matrices, objects that have received much attention in combinatorics.Comment: 9 pages LaTeX, 11 Postscript figures, minor change

    A Conformal Mapping and Isothermal Perfect Fluid Model

    Get PDF
    Instead of conformal to flat spacetime, we take the metric conformal to a spacetime which can be thought of as ``minimally'' curved in the sense that free particles experience no gravitational force yet it has non-zero curvature. The base spacetime can be written in the Kerr-Schild form in spherical polar coordinates. The conformal metric then admits the unique three parameter family of perfect fluid solution which is static and inhomogeneous. The density and pressure fall off in the curvature radial coordinates as R2,R^{-2}, for unbounded cosmological model with a barotropic equation of state. This is the characteristic of isothermal fluid. We thus have an ansatz for isothermal perfect fluid model. The solution can also represent bounded fluid spheres.Comment: 10 pages, TeX versio

    Oxygen, α\alpha-element and iron abundance distributions in the inner part of the Galactic thin disc. II

    Full text link
    We have derived the abundances of 36 chemical elements in one Cepheid star, ASAS 181024--2049.6, located RG=2.53_{\rm G}= 2.53 kpc from the Galactic center. This star falls within a region of the inner thin disc poorly sampled in Cepheids. Our spectral analysis shows that iron, magnesium, silicon, calcium and titanium LTE abundances in that star support the presence of a plateau-like abundance distribution in the thin disc within 5 kpc of the Galactic center, as previously suggested by \cite{Maret15}. If confirmed, the flattening of the abundance gradient within that region could be the result of a decrease in the star formation rate due to dynamic effects, possibly from the central Galactic bar.Comment: 5 pages, 3 figure

    The Blob Algebra and the Periodic Temperley-Lieb Algebra

    Full text link
    We determine the structure of two variations on the Temperley-Lieb algebra, both used for dealing with special kinds of boundary conditions in statistical mechanics models. The first is a new algebra, the `blob' algebra (the reason for the name will become obvious shortly!). We determine both the generic and all the exceptional structures for this two parameter algebra. The second is the periodic Temperley-Lieb algebra. The generic structure and part of the exceptional structure of this algebra have already been studied. Here we complete the analysis, using results from the study of the blob algebra.Comment: 12 page

    New Approach to Nonlinear Dynamics of Fullerenes and Fullerites

    Get PDF
    New type of nonlinear (anharmonic) excitations -- bushes of vibrational modes -- in physical systems with point or space symmetry are discussed. All infrared active and Raman active bushes for C60 fulerene are found by means of special group-theoretical methods.Comment: LaTeX, 8 pages, to be published in Fizika Tverdogo Tela, 200

    Enhanced thermoelectric figure of merit in vertical graphene junctions

    Full text link
    In this work, we investigate thermoelectric properties of junctions consisting of two partially overlapped graphene sheets coupled to each other in the cross-plane direction. It is shown that because of the weak van-der Waals interactions between graphene layers, the phonon conductance in these junctions is strongly reduced, compared to that of single graphene layer structures, while their electrical performance is weakly affected. By exploiting this effect, we demonstrate that the thermoelectric figure of merit can reach values higher than 1 at room temperature in junctions made of gapped graphene materials, for instance, graphene nanoribbons and graphene nanomeshes. The dependence of thermoelectric properties on the junction length is also discussed. This theoretical study hence suggests an efficient way to enhance thermoelectric efficiency of graphene devices.Comment: 6 pages, 4 figures, submitte

    Thermodynamics of Finite Quantum Systems: Application to Spin Magnetism II

    Full text link
    We extend our study of thermodynamics of a Kubo particle to temperatures smaller than the interlevel spacing. We obtain the distribution functions of spin susceptibility and heat capacity for Poisson and Wigner-Dyson level statistics. We evaluate the line shape of the Knight shift due to spin effects both in a single particle and for the ensemble average and compare it with orbital and spin-orbit contributions.Comment: 20 pages (16 text, 4 figures) uu-encoded, z-compressed PostScript. Latest versions of manuscripts available at http://physuna.phs.uc.edu/professors/serota.html or by e-mail, by request from [email protected]

    Bright solitary waves of atomic Bose-Einstein condensates under rotation

    Get PDF
    We analyse the rotation of bright solitary waves formed of atomic Bose-Einstein condensates with attractive atomic interactions. By employing a variational technique and assuming an irrotational quadrupolar flow field, we map out the variational solutions in the rotating frame. In particular, we show that rotation has a considerable stabilising effect on the system, significantly raising the critical threshold for collapse of the bright solitary waves.Comment: 4 pages, 3 figure
    corecore