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Bright solitary waves of atomic Bose-Einstein condensates under rotation
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We analyze the rotation of bright solitary waves formed of atomic Bose-Einstein condensates with attractive
atomic interactions. By employing a variational technique and assuming an irrotational quadrupolar flow field,
we map out the variational solutions in the rotating frame. In particular, we show that rotation has a consid-
erable stabilizing effect on the system, significantly raising the critical threshold for collapse of the bright

solitary waves.

DOI: 10.1103/PhysRevA.77.051603

In recent years, bright solitary waves (BSWs) have been
created using ultracold atomic Bose-Einstein condensates
(BECs) [1]. For attractive atomic interactions, these matter
waves are self-trapped in the longitudinal direction [2—6] and
are analogous to one-dimensional (1D) solitons [7]. How-
ever, these states must be confined in the remaining direc-
tions by a waveguide and can retain three-dimensional ef-
fects. The most lucid example is the collapse instability: in
3D, a homogeneous, untrapped BEC with attractive interac-
tions is unstable to collapse [8] while the 1D limit is stable to
collapse. The presence of external trapping stabilizes the
BEC up to a critical atom number (or interaction strength)
before collapse is triggered [9,10]. The collapse instability
has limited BSW experiments to only a few thousand atoms
per BSW [1]. The BSW solutions, and their critical points,
have been studied theoretically [3-6], with variational ap-
proaches shown to give very good predictions. BSWs offer
exciting prospects for atom-surface detection [11], and their
collisions, which show intriguing behavior and may have
applications in interferometry, are also prone to collapse in-
stabilities [5,6,13-15]. As such, it is pertinent to consider
approaches to suppress collapse in attractive BECs. Periodic
modulation of the interaction strength, made possible by em-
ploying a Feshbach resonance, is predicted to partially stabi-
lize against collapse [16], although when the interaction is
sign-definite and the mean is attractive, collapse is inevitable
[17]. The presence of a quantized vortex is also predicted to
raise the threshold for collapse [13,18-20], although the
presence of a vortex in an attractive condensate under har-
monic trapping is energetically unstable [18,21]. Recent
work also considered the possibility of fragmented states,
where the occupation of more than one mode [22] is postu-
lated, such that the critical number for collapse increases.

The rotation of repulsive BECs has been considered ex-
tensively experimentally and theoretically (see [23] for a re-
view). One method is to mechanically rotate the BEC in an
elliptical trap [24-26] formed by time-dependent laser or
magnetic fields. At low rotation frequency (), the condensate
remains irrotational and vortex-free. According to a hydro-
dynamical model, the BEC can access a family of rotating
stationary solutions, characterized by a quadrupolar irrota-
tional flow pattern [27-32] and confirmed experimentally
[25]. At a critical rotation frequency, when these irrotational
solutions become unstable [30,32], vortices are nucleated
and form a vortex lattice. In the context of attractive BECs,
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theoretical work has shown that a center-of-mass mode is
favored under rotation rather than the occurrence of vortices
[21,33]. Under harmonic trapping, this mode becomes ex-
cited when () exceeds the trap frequency. In the context of
rotating optical lattices, solitons and vortex solitons have
also been studied theoretically [34].

In this work, we consider the rotation of BSWs in an
elliptical trap about the longitudinal axis. We employ a varia-
tional technique based on assuming an ansatz for the BSW
profile, which incorporates a quadrupolar irrotational flow
pattern. By deriving the variational energy of the system, we
obtain the BSW solutions and analyze their response to ro-
tation, finding that rotation can significantly increase the
critical point for collapse.

We consider a BEC confined by an atomic “waveguide”
potential, under rotation at frequency () about the longitudi-
nal axis. In the limit of zero temperature, the BEC can be
described by a mean-field “wave function” W(r,7) that satis-
fies the Gross-Pitaevskii equation (GPE) [23],
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where m is the atomic mass and g=4mh%a,/m parametrizes
the atomic interactions, with a¢ being the s-wave scattering

length. The QI: term accounts for frame rotation, where I:
=—iﬁ(xj;—y0—(i) is the z-component angular momentum op-
erator. We consider a harmonic trapping potential,

V(r) = émwi[(l — x>+ (1 + €)y* + N2, (2)

where w, is the average trap frequency in the x-y plane, € is
the trap ellipticity in the x-y plane, and A=w,/ w, is the trap
ratio that determines the axial trap strength.

To study BSW solutions, we employ a variational tech-
nique. This involves assuming a BSW ansatz and minimizing
its energy to obtain variational solutions. This technique has
been employed for nonrotating BSWs and has been shown to
give very good agreement with the full solution of the GPE.
As we will see, the rotating frame solutions can be mapped
onto nonrotating solutions with reduced trap frequencies
(due to centrifugal effects), and as such we expect the varia-
tional technique to continue being an excellent description.
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For weak axial trapping (A <1), a sech ansatz for the BSW is
employed,

N :
\PS - —e—x2/21 eV 2/21\ SCCh( )elrlxy , (3)
N 21,00 I,

where N is the atom number. For a=0, this ansatz is identi-
cal to that used in Refs. [4—6], with the sech axial profile
appropriate because it is the form of the 1D soliton solution
[7]. The term e* introduces a quadrupolar flow pattern to
the BEC, of amplitude «. This preserves irrotationality and
has been successful in modeling vortex-free repulsive BECs
under rotation [25,28-32].
The total energy of the system is defined by
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Insertion of the ansatz into Eq. (4) gives the energy Eg,
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We can reduce the number of variables in Eq. (5) as fol-
lows. Under the hydrodynamical interpretation, the mean-
field wave function can be expressed as W(r,r)
=yn(r,t)exp[i¢(r,1)], where n(r,7) and ¢(r,) are the con-
densate density and phase, respectively. Furthermore,
v(r,1)=(h/m)V(r,r) is the “fluid” velocity. Inserting this
into the GPE and equating imaginary parts, one derives a
continuity equation given by

on
E+V-(n[v—ﬂ><r])=0. (6)
Our irrotational phase distribution ¢(r)=axy corresponds to
a velocity distribution v(r) =Aa(yi+xj)/m. Inserting this into
the continuity equation and setting dn/dt=0, we find that
stationary solutions satisfy
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Note that a can be positive or negative, resulting in two
“branches” of solutions. For a>0, the BSW is wider in the
x direction than in the y direction, and vice versa for a<<0.
We can thus eliminate « from Eq. (5). For simplicity, we
employ rescaled variables vy, =l/a,, vy,=l/a, v.,=l/a,
0=0/w,, and e=E/ (Nhw,), where a,=\#/mw, is the ra-
dial harmonic-oscillator length. Introducing the dimension-
less interaction parameter k=N |ag|/a,, the ansatz energy be-
comes
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FIG. 1. (Color online) Energy landscape of the nonrotating and
nonelliptical system for A=0 according to Eq. (8). (a) Stable regime
k=0.4 <k, featuring a local-energy minimum, i.e., the BSW solu-
tion. (b) Unstable regime k=0.8>k,, where the whole parameter
space is unstable to collapse. White contours highlight the shape of
the landscapes. Since Eq. (8) is cylindrically symmetric in this case,
we introduce a radial length scale y2=(y>+ yi)/ 4.
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Equation (8) is valid for A<<1. Under tight axial trapping
A >0, this direction is dominated by the trap rather than the
interactions and it is appropriate to consider a Gaussian an-

satz,
[ N 2 2 2
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The rescaled energy for the Gaussian ansatz is then
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For the regimes of interest, the sech and Gaussian ansatz
give similar results, typically differing by less than 10% [6].
The 3D energy landscapes of the rotating BSWs as a func-
tion of the length scales y,, ¥, and y, can be mapped out,
with variational BSW solutions existing where there is a
local-energy minimum. The BSW has widths 72, *yS, and y(;,
energy &, and quadrupolar flow amplitude ap.

We first revisit the A\=0 BSW solutions in the absence of
rotation and ellipticity, as studied previously using the a=0
limits of Eq. (8) [4,6] and Eq. (10) [2]. Here the energy
landscape is cylindrically symmetric (€=0) and so we intro-
duce a radial length scale y*=(y+ )/2)/ 4. A typical energy
landscape, according to Eq. (8), for a stable BSW solution
(k=0.4) is shown in Fig. 1(a). At the origin, the interaction
term in Eq. (8) diverges to negative values and is a region of
collapse of the BSW. However, there exists a local-energy
minimum that represents the self-trapped BSW solution. A
typical unstable energy landscape (k=0.8) is shown in Fig.
1(b). No local energy minimum exists, and the system is
unstable to collapse. The critical interaction strength for col-

—4. (10)
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FIG. 2. Properties of e=0 BSW solutions as a function of €} for
N=0 (solid line) and the axially trapped cases of A=1 (dashed lines)
and 5 (dotted lines). (a) Quadrupolar flow amplitude «a for interac-
tion parameter k=0.4. (b) BSW energy g, for k=0.4. (c) Axial
length scale 70 for k=0.4. (d) Critical interaction parameter for
collapse k.. Note that for A=0 (A >0) we employ the sech (Gauss-
ian) ansatz.

lapse is determined to be k.=0.76, in good agreement with
the full solution of the GPE, which gives k.~ 0.68 [4,6].

Figures 2(a)-2(c) show how the key parameters vary as
rotation is introduced for a fixed interaction parameter k
=0.4 and €=0. For {)>0, the symmetry between 7, and 7, is
broken and the solutions have nonzero « [Fig. 2(a)]. We see
the formation of two branches of «,. Due to the trap sym-
metry in the x-y plane, the branches are symmetric about the
ay=0 axis, with the upper branch being elongated in the x
direction and the lower branch being elongated in the y di-
rection. As () increases, so too does the magnitude of «,
implying a spreading of the BSW in the x-y plane. This is
because of the growth of an outward centrifugal force. As Q)
approaches w,, a, diverges to *oo.This is because, at ()
=w,, the centrifugal force exactly balances the trapping po-
tential, and the BEC is untrapped in the x-y plane. Since the
BEC center of mass becomes dynamically unstable, this is
termed the center-of-mass instability [35]. The BSW energy
[Fig. 2(b)] decreases toward zero as ) — w, as a result of the
reduced density. The axial length scale [Fig. 2(c)] grows with
Q) since the radial spreading dilutes the interaction strength
and forms a less tightly bound BSW.

We have isolated the critical interaction parameter for col-
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FIG. 3. Properties of the rotating A\=0 BSWs for elliptical traps
of €=0.1 (dashed lines) and 0.2 (dotted lines). Black (gray) lines
indicate upper (lower) branch solutions. (a) Quadrupolar flow am-
plitude « for k=0.4. (b) BSW energies g. (c) Axial length scales
y(z), (d) Critical interaction parameter for collapse k. of the upper
branch solutions.

lapse k. as a function of ) with the results shown in Fig.
2(d). The most striking feature is that k. dramatically in-
creases as (), approaches w,. This is directly associated with
the radial spreading and reduced density of the rotating so-
lutions. Specifically, for )/ w,=0.9, k. is approximately 50%
larger than its nonrotating value while for )/ w,=0.97, k. is
approximately twice as large.

In Fig. 2, we also consider the presence of significant
axial trapping N=1 (dashed line) and 5 (dotted line), for
which we employ the Gaussian ansatz. We see similar quali-
tative behavior to the A=0 case: a divergent growth of aj
[Fig. 2(a)] and a decrease in g, [Fig. 2(b)]. However, the
magnitudes are consistently less than the corresponding A
=0 results. The axial length scales [Fig. 2(c)] show little
variation with () since this is now dominated by the external
axial trapping. The critical point for collapse k. grows with
), but at a slower rate than for N=0, with axial trapping
reducing k. [6,12].

The €=0 limit is somewhat unphysical since no torque is
actually applied to the BEC. We now consider the more re-
alistic case of finite trap ellipticity. The results for A=0
BSWs under €=0.1 and 0.2 are presented in Fig. 3. The finite
ellipticity breaks the symmetry in the x-y plane and therefore
in the branches of «,. The upper branch solutions are elon-
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gated in the x direction, which has trap frequency w,
=(1 —€)w,. The center-of-mass instability then occurs when
Q=v(1-¢€)w,, which is why the divergence in «, shifts to
lowerﬁ Conversely, the lower branch solutions diverge at
Q=\1+ew, and so become shifted toward larger ().

The energy [Fig. 3(b)] shows that the upper branch solu-
tions have lower energy. That is, it is energetically favorable
for the BSW to be elongated in x rather than y, since the trap
is weaker in this direction. Consequently, only the upper
branch solutions would ever be observed. Apart from the
shift in the asymptotes introduced by the finite ellipticity, the
behavior of «, €, and )\2 is qualitatively similar to the e
=0 case. In Fig. 2(d), we plot the critical interaction param-
eter for collapse k. of the upper branch solutions. As for the
€=0 case, a dramatic in increase in k. is predicted as
Q—Vl-ew,.

In considering static solutions (in the rotating frame), our
results apply to when collapse is approached adiabatically. If
collapse in induced nonadiabatically, e.g., by rapidly ramp-
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ing up the attractive interactions, the dynamics become de-
pendent on the functional form of the ramping with collec-
tive mode excitation. Our methodology could be extended to
describe such dynamics by deriving the equations of motion
for the rotating Gaussian ansatz, as performed for the nonro-
tating case [2].

In this work, we have employed a variational technique to
study bright solitary matter-wave solutions under rotation in
elliptical traps. This is made possible by incorporating an
irrotational quadrupolar flow pattern into the variational an-
satz. Importantly, the BSW becomes more stable to the col-
lapse instability when under rotation, enabling a significant
increase in the number of atoms before the onset of collapse.
Our study opens the door to controllably stabilize bright soli-
tary waves against collapse, as well as the novel exploration
of collapse dynamics in rotating systems.
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