117,451 research outputs found

    The top squark-mediated annihilation scenario and direct detection of dark matter in compressed supersymmetry

    Full text link
    Top squark-mediated annihilation of bino-like neutralinos to top-antitop pairs can play the dominant role in obtaining a thermal relic dark matter abundance in agreement with observations. In a previous paper, it was argued that this can occur naturally in models of compressed supersymmetry, which feature a running gluino mass parameter that is substantially smaller than the wino mass parameter at the scale of apparent gauge coupling unification. Here I study in some more detail the parameter space in which this is viable, and compare to other scenarios for obtaining the observed dark matter density. I then study the possibility of detecting the dark matter directly in future experiments. The prospects are consistently very promising for a wide variety of model parameters within this scenario.Comment: 17 pages. v2: additions to figures 4 and

    Optimized Monte Carlo Method for glasses

    Get PDF
    A new Monte Carlo algorithm is introduced for the simulation of supercooled liquids and glass formers, and tested in two model glasses. The algorithm is shown to thermalize well below the Mode Coupling temperature and to outperform other optimized Monte Carlo methods. Using the algorithm, we obtain finite size effects in the specific heat. This effect points to the existence of a large correlation length measurable in equal time correlation functions.Comment: Proceedings of "X International workshop on Disordered Systems" held in Molveno (Italy), March 200

    Finite size effects in the specific heat of glass-formers

    Get PDF
    We report clear finite size effects in the specific heat and in the relaxation times of a model glass former at temperatures considerably smaller than the Mode Coupling transition. A crucial ingredient to reach this result is a new Monte Carlo algorithm which allows us to reduce the relaxation time by two order of magnitudes. These effects signal the existence of a large correlation length in static quantities.Comment: Proceeding of "3rd International Workshop on Complex Systems". Sendai (Japan). To appear on AIP Conference serie

    On the critical behavior of the specific heat in glass-formers

    Get PDF
    We show numeric evidence that, at low enough temperatures, the potential energy density of a glass-forming liquid fluctuates over length scales much larger than the interaction range. We focus on the behavior of translationally invariant quantities. The growing correlation length is unveiled by studying the Finite Size effects. In the thermodynamic limit, the specific heat and the relaxation time diverge as a power law. Both features point towards the existence of a critical point in the metastable supercooled liquid phase.Comment: Version to be published in Phys. Rev.

    Updates of PDFs in the MSTW framework

    Full text link
    I present results on updates on PDFs which are obtained within the general framework which led to the MSTW2008 PDF sets. There are some theory and procedural improvements and a variety of new data sets, including many relevant up-to-date LHC data. A new set of PDFs is very close to being finalised, with no significant changes expected to the preliminary PDFs shown here.Comment: 6 pages, 6 figures,Published in PoS DIS (2014

    Piezoelectric rotator for studying quantum effects in semiconductor nanostructures at high magnetic fields and low temperatures

    Full text link
    We report the design and development of a piezoelectric sample rotation system, and its integration into an Oxford Instruments Kelvinox 100 dilution refrigerator, for orientation-dependent studies of quantum transport in semiconductor nanodevices at millikelvin temperatures in magnetic fields up to 10T. Our apparatus allows for continuous in situ rotation of a device through >100deg in two possible configurations. The first enables rotation of the field within the plane of the device, and the second allows the field to be rotated from in-plane to perpendicular to the device plane. An integrated angle sensor coupled with a closed-loop feedback system allows the device orientation to be known to within +/-0.03deg whilst maintaining the sample temperature below 100mK.Comment: 8 pages, 5 figure

    Discovery of a Spin-Down State Change in the LMC Pulsar B0540-69

    Full text link
    We report the discovery of a large, sudden, and persistent increase in the spin-down rate of B0540-69, a young pulsar in the Large Magellanic Cloud, using observations from the Swift and RXTE satellites. The relative increase in the spin-down rate of 36% is unprecedented for B0540-69. No accompanying change in the spin rate is seen, and no change is seen in the pulsed X-ray emission from B0540-69 following the change in the spin-down rate. Such large relative changes in the spin-down rate are seen in the recently discovered class of 'intermittent pulsars', and we compare the properties of B0540-69 to such pulsars. We consider possible changes in the magnetosphere of the pulsar that could cause such a large change in the spin-down rate.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter

    Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts

    Full text link
    The strength of the Zeeman splitting induced by an applied magnetic field is an important factor for the realization of spin-resolved transport in mesoscopic devices. We measure the Zeeman splitting for a quantum point contact etched into a Ga0.25In0.75As quantum well, with the field oriented parallel to the transport direction. We observe an enhancement of the Lande g-factor from |g*|=3.8 +/- 0.2 for the third subband to |g*|=5.8 +/- 0.6 for the first subband, six times larger than in GaAs. We report subband spacings in excess of 10 meV, which facilitates quantum transport at higher temperatures.Comment: [Version 2] Revtex4, 11 pages, 3 figures, accepted for publication in Applied Physics Letter

    Anderson impurity in a semiconductor

    Full text link
    We consider an Anderson impurity model in which the locally correlated orbital is coupled to a host with a gapped density of states. Single-particle dynamics are studied, within a perturbative framework that includes both explicit second-order perturbation theory and self-consistent perturbation theory to all orders in the interaction. Away from particle-hole symmetry the system is shown to be a generalized Fermi liquid (GFL) in the sense of being perturbatively connectable to the non-interacting limit; and the exact Friedel sum rule for the GFL phase is obtained. We show by contrast that the particle-hole symmetric point of the model is not perturbatively connected to the non-interacting limit, and as such is a non-Fermi liquid for all non-zero gaps. Our conclusions are in agreement with NRG studies of the problem.Comment: 7 pages, 4 figure
    • …
    corecore