19,614 research outputs found
Free-living marine nematode communities: In San Jorge gulf, Argentina
The aim of this study was to investigate the patterns of nematode diversity and community structure in San Jorge Gulf, Argentina, in order to improve knowledge of this key group of organisms. Free-living marine nematodes were sampled at 13 stations in February 2014 during an expedition aboard R/V Coriolis II. We found a total of 188 species (101 of which were new to science) belonging to 98 genera. The statistical results indicated the presence of three different assemblages of free-living marine nematodes distributed spatially in three distinct zones in the gulf: the central part, the outer thermal front at both sides of the entrance, and the south thermal front area. Diversity increased from the coast to the entrance of the gulf, and the highest diversity was found in areas with coarser sediment. Sediment and salinity were the environmental parameters that best matched nematode community distribution.Fil: Pastor de Ward, Catalina T.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Lo Russo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Varisco, Martin Alejandro. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentin
A Multipartite Hajnal-Szemer\'edi Theorem
The celebrated Hajnal-Szemer\'edi theorem gives the precise minimum degree
threshold that forces a graph to contain a perfect K_k-packing. Fischer's
conjecture states that the analogous result holds for all multipartite graphs
except for those formed by a single construction. Recently, we deduced an
approximate version of this conjecture from new results on perfect matchings in
hypergraphs. In this paper, we apply a stability analysis to the extremal cases
of this argument, thus showing that the exact conjecture holds for any
sufficiently large graph.Comment: Final version, accepted to appear in JCTB. 43 pages, 2 figure
Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics
In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L1 and the other around L2, with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the "interior" and "exterior" Hill's regions and other resonant phenomena
Statistical Theory of Asteroid Escape Rates
Transition states in phase space are identified and shown to regulate the rate of escape of asteroids temporarily captured in circumplanetary orbits. The transition states, similar to those occurring in chemical reaction dynamics, are then used to develop a statistical semianalytical theory for the rate of escape of asteroids temporarily captured by Mars. Theory and numerical simulations are found to agree to better than 1%. These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations
The Genesis Trajectory and Heteroclinic Cycles
Genesis will be NASA's first robotic sample return mission. The purpose
of this mission is to collect solar wind samples for two years in an L_1 halo
orbit and return them to the Utah Test and Training Range (UTTR) for
mid-air retrieval by helicopters. To do this, the Genesis spacecraft makes
an excursion into the region around L_2 . This transfer between L_1 and
L_2 requires no deterministic maneuvers and is provided by the existence
of heteroclinic cycles defined below. The Genesis trajectory was designed
with the knowledge of the conjectured existence of these heteroclinic cycles.
We now have provided the first systematic, semi-analytic construction of
such cycles. The heteroclinic cycle provides several interesting applications
for future missions. First, it provides a rapid low-energy dynamical channel
between L_1 and L_2 such as used by the Genesis Discovery Mission. Second,
it provides a dynamical mechanism for the temporary capture of objects
around a planet without propulsion. Third, interactions with the Moon.
Here we speak of the interactions of the Sun-Earth Lagrange point dynamics
with the Earth-Moon Lagrange point dynamics. We motivate the discussion
using Jupiter comet orbits as examples. By studying the natural dynamics
of the Solar System, we enhance current and future space mission design
Constructing a Low Energy Transfer Between Jovian Moons
There has recently been considerable interest in sending a spacecraft to orbit Europa, the smallest
of the four Galilean moons of Jupiter. The trajectory design involved in effecting a capture by Europa
presents formidable challenges to traditional conic analysis since the regimes of motion involved depend heavily on three-body dynamics. New three-body perspectives are required to design successful
and efficient missions which take full advantage of the natural dynamics. Not only does a three-body
approach provide low-fuel trajectories, but it also increases the flexibility and versatility of missions.
We apply this approach to design a new mission concept wherein a spacecraft "leap-frogs" between
moons, orbiting each for a desired duration in a temporary capture orbit. We call this concept the
"Petit Grand Tour."
For this application, we apply dynamical systems techniques developed in a previous paper to
design a Europa capture orbit. We show how it is possible, using a gravitional boost from Ganymede,
to go from a jovicentric orbit beyond the orbit of Ganymede to a ballistic capture orbit around
Europa. The main new technical result is the employment of dynamical channels in the phase space
- tubes in the energy surface which naturally link the vicinity of Ganymede to the vicinity of Europa.
The transfer V necessary to jump from one moon to another is less than half that required by a
standard Hohmann transfer
Distorted HI Gas in the Widely Separated LIRG Arp 256
We present new interferometric HI and CO (1-0) observations of the luminous
infrared source, Arp 256. Arp 256 consists of two spiral galaxies in an early
stage of merging, with a projected nuclear separation of 29 kpc (54") and an
infrared luminosity of 2.0E11 L_sun. Despite the large separation of the
galaxies' nuclei and mildly disrupted stellar components, the HI disks are
found to be strongly disrupted, and the southern galaxy in Arp 256 shows an
elevated star formation efficiency, which is consistent with a nuclear
starburst. Both of these results run contrary to expectations, posing
interesting questions on the physical mechanisms involved in stimulating star
formation during an interaction.Comment: 19 pages, 7 figures. Accepted for publication in AJ. Author added.
Full resolution figures available at
http://astro.uchicago.edu/home/web/jchen/arp25
Semi-immersive space mission design and visualization: case study of the "terrestrial planet finder" mission
The paper addresses visualization issues of the Terrestrial Planet Finder Mission (C.A. Beichman et al., 1999). The goal of this mission is to search for chemical signatures of life in distant solar systems using five satellites flying in formation to simulate a large telescope. To design and visually verify such a delicate mission, one has to analyze and interact with many different 3D spacecraft trajectories, which is often difficult in 2D. We employ a novel trajectory design approach using invariant manifold theory, which is best understood and utilized in an immersive setting. The visualization also addresses multi-scale issues related to the vast differences in distance, velocity, and time at different phases of the mission. Additionally, the parameterization and coordinate frames used for numerical simulations may not be suitable for direct visualization. Relative motion presents a more serious problem where the patterns of the trajectories can only be viewed in particular rotating frames. Some of these problems are greatly relieved by using interactive, animated stereo 3D visualization in a semi-immersive environment such as a Responsive Workbench. Others were solved using standard techniques such as a stratify approach with multiple windows to address the multiscale issues, re-parameterizations of trajectories and associated 2D manifolds and relative motion of the camera to "evoke" the desired patterns
Passive heaving of elliptical cylinders with active pitching – From cylinders towards flapping foils
This paper presents a study of the flow past elastically mounted cylinders with prescribed rotational oscillation about the cylinder centre, which are free to heave, or oscillate transverse to the flow. The configuration serves as an idealized model of a flapping-foil energy harvester. A range of geometries are tested, from the circular cylinder with an aspect ratio of 1.0 to elliptical cylinders up to aspect ratio of 6.0 approaching a flat plate. The driving frequency of the rotational oscillation is varied, while the amplitude of rotation is fixed at π/2, meaning both axes of the geometries present fully to the oncoming flow each cycle. The Reynolds number is 200. The natural frequency of the elastic-mounting is set to the Strouhal frequency for a circular cylinder. The ratio of the mass of the cylinder to the mass of the equivalent volume of displaced fluid is set to 5.0. Configurations with zero-damping reveal a rich parameter space, with increasing cross-stream oscillation with increasing geometry aspect ratio. Driving frequencies for peak oscillation amplitude are grouped around a driving frequency of 0.9 times the natural frequency of the elastic structure. The variation of the power input to actuate the rotational oscillation of the cylinder is also analysed. The fluid structure interaction is analysed for energy harvesting potential; power output is modelled by linear damping on the heave. Increasing the damping on the structure leads to optimal values of driving frequency and damping for each aspect ratio tested. For each aspect ratio, comparisons are drawn and similarities found between these optimal cases for power output and the undamped cases for maximum oscillation amplitude and velocity. The study of the parameter space serves as a useful starting point for further study of the many parameters affecting the performance of flapping-foil energy harvesting
- …
