1,453 research outputs found
Double-helix Wilson loops: case of two angular momenta
Recently, Wilson loops with the shape of a double helix have played an
important role in studying large spin operators in gauge theories. They
correspond to a quark and an anti-quark moving in circles on an S3 (and
therefore each of them describes a helix in RxS3). In this paper we consider
the case where the particles have two angular momenta on the S3. The string
solution corresponding to such Wilson loop can be found using the relation to
the Neumann-Rosochatius system allowing the computation of the energy and
angular momenta of the configuration. The particular case of only one angular
momentum is also considered. It can be thought as an analytic continuation of
the rotating strings which are dual to operators in the SL(2) sector of N=4
SYM.Comment: 30 pages, 2 figures, LaTeX. v2: Small corrections, reference adde
A Connection between Twistors and Superstring Sigma Models on Coset Superspaces
We consider superstring sigma models that are based on coset superspaces G/H
in which H arises as the fixed point set of an order-4 automorphism of G. We
show by means of twistor theory that the corresponding first-order system,
consisting of the Maurer-Cartan equations and the equations of motion, arises
from a dimensional reduction of some generalised self-dual Yang-Mills equations
in eight dimensions. Such a relationship might help shed light on the explicit
construction of solutions to the superstring equations including their hidden
symmetry structures and thus on the properties of their gauge theory duals.Comment: v3: 16 pages, typos fixed and minor clarifications adde
Embedding a Native State into a Random Heteropolymer Model: The Dynamic Approach
We study a random heteropolymer model with Langevin dynamics, in the
supersymmetric formulation. Employing a procedure similar to one that has been
used in static calculations, we construct an ensemble in which the affinity of
the system for a native state is controlled by a "selection temperature" T0. In
the limit of high T0, the model reduces to a random heteropolymer, while for
T0-->0 the system is forced into the native state. Within the Gaussian
variational approach that we employed previously for the random heteropolymer,
we explore the phases of the system for large and small T0. For large T0, the
system exhibits a (dynamical) spin glass phase, like that found for the random
heteropolymer, below a temperature Tg. For small T0, we find an ordered phase,
characterized by a nonzero overlap with the native state, below a temperature
Tn \propto 1/T0 > Tg. However, the random-globule phase remains locally stable
below Tn, down to the dynamical glass transition at Tg. Thus, in this model,
folding is rapid for temperatures between Tg and Tn, but below Tg the system
can get trapped in conformations uncorrelated with the native state. At a lower
temperature, the ordered phase can also undergo a dynamical glass transition,
splitting into substates separated by large barriers.Comment: 19 pages, revtex, 6 figure
Suppression of static stripe formation by next-neighbor hopping
We show from real-space Hartree-Fock calculations within the extended Hubbard
model that next-nearest neighbor (t') hopping processes act to suppress the
formation of static charge stripes. This result is confirmed by investigating
the evolution of charge-inhomogeneous corral and stripe phases with increasing
t' of both signs. We propose that large t' values in YBCO prevent static stripe
formation, while anomalously small t' in LSCO provides an additional reason for
the appearance of static stripes only in these systems.Comment: 4 pages, 5 figure
Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem
The problem of the origin of the mu parameter in the Minimal Supersymmetric
Standard Model can be solved by introducing singlet supermultiplets with
non-renormalizable couplings to the ordinary Higgs supermultiplets. The
Peccei-Quinn symmetry is broken at a scale which is the geometric mean between
the weak scale and the Planck scale, yielding a mu term of the right order of
magnitude and an invisible axion. These models also predict one or more singlet
fermions which have electroweak-scale masses and suppressed couplings to MSSM
states. I consider the case that such a singlet fermion, containing the axino
as an admixture, is the lightest supersymmetric particle. I work out the
relevant couplings in several of the simplest models of this type, and compute
the partial decay widths of the next-to-lightest supersymmetric particle
involving leptons or jets. Although these decays will have an average proper
decay length which is most likely much larger than a typical collider detector,
they can occasionally occur within the detector, providing a striking signal.
With a large sample of supersymmetric events, there will be an opportunity to
observe these decays, and so gain direct information about physics at very high
energy scales.Comment: 24 pages, LaTeX, 4 figure
Rings and rigidity transitions in network glasses
Three elastic phases of covalent networks, (I) floppy, (II) isostatically
rigid and (III) stressed-rigid have now been identified in glasses at specific
degrees of cross-linking (or chemical composition) both in theory and
experiments. Here we use size-increasing cluster combinatorics and constraint
counting algorithms to study analytically possible consequences of
self-organization. In the presence of small rings that can be locally I, II or
III, we obtain two transitions instead of the previously reported single
percolative transition at the mean coordination number , one from a
floppy to an isostatic rigid phase, and a second one from an isostatic to a
stressed rigid phase. The width of the intermediate phase and the
order of the phase transitions depend on the nature of medium range order
(relative ring fractions). We compare the results to the Group IV
chalcogenides, such as Ge-Se and Si-Se, for which evidence of an intermediate
phase has been obtained, and for which estimates of ring fractions can be made
from structures of high T crystalline phases.Comment: 29 pages, revtex, 7 eps figure
WKB approximation for inflationary cosmological perturbations
A new method for predicting inflationary cosmological perturbations, based on
the Wentzel-Kramers-Brillouin (WKB) approximation, is presented. A general
expression for the WKB scalar and tensor power spectra is derived. The main
advantage of the new scheme of approximation is that it is valid even if the
slow-roll conditions are violated. The method is applied to power-law
inflation, which allows a comparison with an exact result. It is demonstrated
that the WKB approximation predicts the spectral indices exactly and the
amplitude with an error lower than 10%, even in regimes far from
scale-invariance. The new method of approximation is also applied to a
situation where the slow-roll conditions hold. It is shown that the result
obtained bears close resemblance with the standard slow-roll calculation.
Finally, some possible improvements are briefly mentioned.Comment: 11 pages, 1 figure, RevTeX; minor changes, reference added (v2);
typos corrected (v3
Fluctuation-Dissipation relations in Driven Granular Gases
We study the dynamics of a 2d driven inelastic gas, by means of Direct
Simulation Monte Carlo (DSMC) techniques, i.e. under the assumption of
Molecular Chaos. Under the effect of a uniform stochastic driving in the form
of a white noise plus a friction term, the gas is kept in a non-equilibrium
Steady State characterized by fractal density correlations and non-Gaussian
distributions of velocities; the mean squared velocity, that is the so-called
{\em granular temperature}, is lower than the bath temperature. We observe that
a modified form of the Kubo relation, which relates the autocorrelation and the
linear response for the dynamics of a system {\em at equilibrium}, still holds
for the off-equilibrium, though stationary, dynamics of the systems under
investigation. Interestingly, the only needed modification to the equilibrium
Kubo relation is the replacement of the equilibrium temperature with an
effective temperature, which results equal to the global granular temperature.
We present two independent numerical experiment, i.e. two different observables
are studied: (a) the staggered density current, whose response to an impulsive
shear is proportional to its autocorrelation in the unperturbed system and (b)
the response of a tracer to a small constant force, switched on at time ,
which is proportional to the mean-square displacement in the unperturbed
system. Both measures confirm the validity of Kubo's formula, provided that the
granular temperature is used as the proportionality factor between response and
autocorrelation, at least for not too large inelasticities.Comment: 11 pages, 7 figures, submitted for publicatio
Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations.
Clostridium difficile has emerged rapidly as the leading cause of antibiotic-associated diarrheal disease, with the temporal and geographical appearance of dominant PCR ribotypes such as 017, 027 and 078. Despite this continued threat, we have a poor understanding of how or why particular variants emerge and the sources of strains that dominate different human populations. We have undertaken a breadth genotyping study using multilocus sequence typing (MLST) analysis of 385 C. difficile strains from diverse sources by host (human, animal and food), geographical locations (North America, Europe and Australia) and PCR ribotypes. Results identified 18 novel sequence types (STs) and 3 new allele sequences and confirmed the presence of five distinct clonal lineages generally associated with outbreaks of C. difficile infection in humans. Strains of animal and food origin were found of both ST-1 and ST-11 that are frequently associated with human disease. An in depth MLST analysis of the evolutionary distant ST-11/PCR ribotype 078 clonal lineage revealed that ST-11 can be found in alternative but closely related PCR ribotypes and PCR ribotype 078 alleles contain mutations generating novel STs. PCR ribotype 027 and 017 lineages may consist of two divergent subclades. Furthermore evidence of microdiversity was present within the heterogeneous clade 1. This study helps to define the evolutionary origin of dominant C. difficile lineages and demonstrates that C. difficile is continuing to evolve in concert with human activity
Passing through the bounce in the ekpyrotic models
By considering a simplified but exact model for realizing the ekpyrotic
scenario, we clarify various assumptions that have been used in the literature.
In particular, we discuss the new ekpyrotic prescription for passing the
perturbations through the singularity which we show to provide a spectrum
depending on a non physical normalization function. We also show that this
prescription does not reproduce the exact result for a sharp transition. Then,
more generally, we demonstrate that, in the only case where a bounce can be
obtained in Einstein General Relativity without facing singularities and/or
violation of the standard energy conditions, the bounce cannot be made
arbitrarily short. This contrasts with the standard (inflationary) situation
where the transition between two eras with different values of the equation of
state can be considered as instantaneous. We then argue that the usually
conserved quantities are not constant on a typical bounce time scale. Finally,
we also examine the case of a test scalar field (or gravitational waves) where
similar results are obtained. We conclude that the full dynamical equations of
the underlying theory should be solved in a non singular case before any
conclusion can be drawn.Comment: 17 pages, ReVTeX 4, 13 figures, minor corrections, conclusions
unchange
- …