3,869 research outputs found
Control of synchronization via electrical stimulation in a large-scale neuronal network model
Insight into the skew-scattering mechanism of the spin Hall effect: potential scattering versus spin-orbit scattering
We present a detailed analysis of the skew-scattering contribution to the
spin Hall conductivity using an extended version of the resonant scattering
model of Fert and Levy [Phys. Rev. Lett. {\bf 106}, 157208 (2011)]. For
impurities in a Cu host, the proposed phase shift model reproduces the
corresponding first-principles calculations. Crucial for that agreement is the
consideration of two scattering channels related to and impurity
states, since the discussed mechanism is governed by a subtle interplay between
the spin-orbit and potential scattering in both angular-momentum channels. It
is shown that the potential scattering strength plays a decisive role for the
magnitude of the spin Hall conductivity
Ground-state triply and doubly heavy baryons in a relativistic three-quark model
Mass spectra of the ground-state baryons consisting of three or two heavy (b
or c) and one light (u,d,s) quarks are calculated in the framework of the
relativistic quark model and the hyperspherical expansion. The predictions of
masses of the triply and doubly heavy baryons are obtained by employing the
perturbation theory for the spin-independent and spin-dependent parts of the
three-quark Hamiltonian.Comment: 10 pages, 2 figures, LaTe
Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume
We have sampled atmospheric ice nuclei (IN) and aerosol in Germany and in Israel during spring 2010. IN were analyzed by the static vapor diffusion chamber FRIDGE, as well as by electron microscopy. During the Eyjafjallajökull volcanic eruption of April 2010 we have measured the highest ice nucleus number concentrations (>600 l−1) in our record of 2 yr of daily IN measurements in central Germany. Even in Israel, located about 5000 km away from Iceland, IN were as high as otherwise only during desert dust storms. The fraction of aerosol activated as ice nuclei at −18 °C and 119% rhice and the corresponding area density of ice-active sites per aerosol surface were considerably higher than what we observed during an intense outbreak of Saharan dust over Europe in May 2008.
Pure volcanic ash accounts for at least 53–68% of the 239 individual ice nucleating particles that we collected in aerosol samples from the event and analyzed by electron microscopy. Volcanic ash samples that had been collected close to the eruption site were aerosolized in the laboratory and measured by FRIDGE. Our analysis confirms the relatively poor ice nucleating efficiency (at −18 °C and 119% ice-saturation) of such "fresh" volcanic ash, as it had recently been found by other workers. We find that both the fraction of the aerosol that is active as ice nuclei as well as the density of ice-active sites on the aerosol surface are three orders of magnitude larger in the samples collected from ambient air during the volcanic peaks than in the aerosolized samples from the ash collected close to the eruption site. From this we conclude that the ice-nucleating properties of volcanic ash may be altered substantially by aging and processing during long-range transport in the atmosphere, and that global volcanism deserves further attention as a potential source of atmospheric ice nuclei
Extrinsic and Intrinsic Contributions to the Spin Hall Effect of Alloys
A fully relativistic description of the spin-orbit induced spin Hall effect is presented that is based on Kubo’s linear response formalism. Using an appropriate operator for the spin-current density a Kubo-Středa-like equation for the spin Hall conductivity (SHC) is obtained. An implementation using the Korringa-Kohn-Rostoker band structure method in combination with the coherent potential approximation allow detailed investigations on various alloy systems. A decomposition of the SHC into intrinsic and extrinsic contributions is suggested. Accompanying calculations for the skew-scattering contribution of the SHC using the Boltzmann equation demonstrate the equivalence to the Kubo formalism in the dilute alloy regime and support the suggested decomposition scheme
Saharan dust and ice nuclei over Central Europe
Surface measurements of aerosol and ice nuclei (IN) at a Central European mountain site during an episode of dust transport from the Sahara are presented. Ice nuclei were sampled by electrostatic precipitation on silicon wafers and were analyzed in an isothermal static vapor diffusion chamber. The transport of mineral dust is simulated by the Eulerian regional dust model DREAM. Ice nuclei and mineral dust are significantly correlated, in particular IN number concentration and aerosol surface area. The ice nucleating characteristics of the aerosol as analyzed with respect to temperature and supersaturation are similar during the dust episode than during the course of the year. This suggests that dust may be a main constituent of ice nucleating aerosols in Central Europe
Turbulent Cooling Flows in Molecular Clouds
We propose that inward, subsonic flows arise from the local dissipation of
turbulent motions in molecular clouds. Such "turbulent cooling flows" may
account for recent observations of spatially extended inward motions towards
dense cores. These pressure-driven flows may arise from various types of
turbulence and dissipation mechanisms. For the example of MHD waves and
turbulence damped by ion-neutral friction, sustained cooling flow requires that
the outer gas be sufficiently turbulent, that the inner gas have marginal
field-neutral coupling, and that this coupling decrease sufficiently rapidly
with increasing density. These conditions are most likely met at the transition
between outer regions ionized primarily by UV photons and inner regions ionized
primarily by cosmic rays. If so, turbulent cooling flows can help form dense
cores, with speeds faster than expected for ambipolar diffusion. Such motions
could reduce the time needed for dense core formation and could precede and
enhance the motions of star-forming gravitational infall.Comment: To appear ApJL, Nov.10, 4 ApJ style pages, Postscrip
- …
