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A fully relativistic description of the spin-orbit induced spin Hall effect is presented that is based on

Kubo’s linear response formalism. Using an appropriate operator for the spin-current density a Kubo-

Středa-like equation for the spin Hall conductivity (SHC) is obtained. An implementation using the

Korringa-Kohn-Rostoker band structure method in combination with the coherent potential approximation

allow detailed investigations on various alloy systems. A decomposition of the SHC into intrinsic and

extrinsic contributions is suggested. Accompanying calculations for the skew-scattering contribution of

the SHC using the Boltzmann equation demonstrate the equivalence to the Kubo formalism in the dilute

alloy regime and support the suggested decomposition scheme.
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The emerging research field of spintronics has devel-
oped very rapidly during recent years. The reason for the
broad interest in this field is based on the close connection
to fundamental scientific questions as well as its impact on
technology [1,2]. In this context, the spin Hall effect (SHE)
is one of the most promising phenomena. It denotes the
observation that a charge current flowing through a solid
is accompanied by a transversal spin current. This occurs
even for nonmagnetic solids as was demonstrated by ex-
periments on pure Pt [3].

Both the anomalous Hall effect (AHE) in ferromagnets
and the SHE are caused by the influence of spin-orbit
coupling (SOC). Accordingly, their theoretical description
is quite similar [4–15]. For ideal systems an intrinsic
mechanism was identified which allows the expression of
the corresponding response function in terms of the Berry
curvature [5,7]. On this basis, ab initio calculations for
the intrinsic spin Hall conductivity (SHC) were performed
[8–11]. As for the AHE, the additional extrinsic SHC in
dilute and concentrated alloys is ascribed to skew and side-
jump scattering caused by SOC. The role of these mecha-
nisms for the SHE has been studied so far primarily by
model calculations [12,13]. First principle calculations for
the extrinsic SHC of dilute alloys on the basis of the
Boltzmann formalism that account for the skew-scattering
mechanism have been performed only very recently
[14,15]. However, a complete description of intrinsic and
extrinsic mechanisms giving rise to the SHE applicable to
ideal as well as alloy systems, as it is presented below, was
missing so far. As pointed out by several authors [16,17], a
central issue for such an approach is an adequate definition
for the spin-current density operator that accounts for
SOC. This was supplied recently by Vernes et al. [18] by
starting from the Bargmann-Wigner four-vector spin
polarization operator T [19]. Demanding that the spin
polarization is connected with the spin-current density

via a corresponding continuity equation an explicit
expression for the spin-current operator was given.
An adequate formal basis for the discussion of the SHE

in nonmagnetic metals is supplied by Kubo’s linear re-
sponse formalism that allows the derivation of an expres-
sion for the spin Hall conductivity tensor. To avoid any
approximation when dealing with SOC the underlying
electronic structure is described in a fully relativistic way
by the four-component Dirac formalism [20]. As for the
ordinary electrical conductivity the perturbation due to the
external electric field is represented in terms of the current

density operator ĵ. In its relativistic form this operator is
given by

ĵ ¼ �jejc�; (1)

where� is the vector-matrix of the standard Dirac matrices
�i [20] and the other quantities have their usual meaning.
The response function to be considered for the SHE is
the spin-current density. Considering for the z component
of the spin polarization vector the current density along
the x direction the corresponding operator is given by
[18,21,22]:

Ĵ z
x ¼ jejc�x

�
��z � 1

mc
�5p̂z

�
; (2)

where p̂z is the canonical momentum operator, �z is the
z component of the vector of the relativistic spin matrix,
� and �5 are Dirac matrices [20].
Adopting a single-particle description of the electronic

structure in terms of the retarded (Gþ) and advanced (G�)
Green’s function and restricting to T ¼ 0 K, an explicit
expression for the SHC is obtained that is similar to the
Kubo-Středa equation for the anomalous Hall conductivity
�xy of ferromagnetic systems. Considering for the spin

polarization along ẑ its current density along x̂ due to an
electric field along ŷ, the SHC �z

xy is given by [23]:
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�z
xy ¼ @

2�N�
TrhĴzxGþĵyG�ic

þ jej
4�iN�

TrhðGþ �G�Þðr̂xĴzy � r̂yĴ
z
xÞic; (3)

where terms containing products of the retarded (or ad-
vanced) Green’s functions have been dropped [6]. Because
of symmetry the last term is site-diagonal for the cubic
systems considered here. As furthermore all system
considered here are metallic [12,24] it has been omitted
as well.

The electronic Green’s function occurring in Eq. (3) for
the Fermi energy EF can be evaluated in a very efficient
way by use of the relativistic version of the multiple
scattering or Korringa-Kohn-Rostoker (KKR) formalism
[25]. This approach is applicable to ideal systems but can
also be applied straightforwardly to disordered alloys. For
this case the brackets h. . .ic in Eq. (3) imply a configura-
tional average that is performed within the coherent poten-
tial approximation (CPA) [26]. For this purpose the
KKR-CPA approach used for the electrical conductivity
tensor of alloys on the basis of the Kubo-Středa equation
[27] has been adapted to Eq. (3). In particular, this ap-
proach accounts explicitly for the so-called vertex correc-
tions which represent the difference in the correlated
and uncorrelated configurational averages of the type

hĴzxGþĵyG�ic and hĴzxGþichĵyG�ic, respectively. For the
following it is important to note that the vertex corrections
correspond to the scattering-in term within the Boltzmann
formalism [26].

Representing the anomalous Hall conductivity (AHC)
�xy in terms of Feynman diagrams it was demonstrated

that all extrinsic contributions to �xy due to skew and side-

jump scattering correspond to terms involving vertex
corrections [28]. Obviously, the same conclusion can be
drawn for the SHC�z

xy. The remaining diagrams, involving

no vertex corrections, stand for the intrinsic anomalous or
spin Hall conductivity, plus corrections to this due to
chemical disorder. It therefore seems natural to extend
the definition of the intrinsic SHC �z intr

xy to diluted and

concentrated alloys to represent all contributions not con-
nected to the vertex corrections, as has already been hinted
at in Refs. [6,29] According to this definition, Eq. (3),
including the vertex corrections, gives the total SHC�z

xy �
�zVC

xy while the intrinsic SHC�zintr
xy � �z noVC

xy is obtained if

those are ignored. Thus, �z intr
xy is the intrinsic SHC of

the effective CPA medium specific for each composition
of a certain alloy. As a consequence, the extrinsic SHC
�z extr

xy to be ascribed to the skew and side-jump scattering

mechanisms is obtained from the difference �z extr
xy ¼

�z
xy � �z intr

xy .

The approach sketched above has been applied to inves-
tigate the SHE for the fcc alloy systems AuxPt1�x and
AgxAu1�x. As can be seen from Fig. 1 �z intr

xy obtained

from Eq. (3) ignoring the vertex corrections varies nearly
linearly with the concentration throughout the whole

composition regime. In addition, Fig. 1 (top) shows results
for the intrinsic SHC of Au [8,11] and Pt [10] obtained by
other authors using an expression for �z intr

xy in terms of the

Berry curvature. Taking into account the differences be-
tween the various calculation schemes used—in particular
concerning the treatment of spin-orbit coupling and the
definition of the spin-current density operator—these data
fit reasonably well with the alloy data obtained using the
Kubo-Středa-like equation [Eq. (3)]. This obviously justi-
fies the extension of the definition for �z intr

xy to the alloy

case to represent all terms that do not involve the vertex
corrections.
In contrast to the intrinsic SHC, the total one (�z

xy) shows

for both investigated alloy systems a divergent behavior in
the dilute limit when the concentration x approaches 0 or 1,
respectively. Interestingly, the corresponding extrinsic SHC
�z extr

xy changes sign when the concentration x varies from

0 to 1. For concentrated alloys (0:2< x< 0:8) the intrinsic
and total SHC do not differ strongly. As this behavior is
also found for other alloy systems that do not show a
change in sign for the extrinsic SHC �z extr

xy it seems that

the impact of the vertex corrections in the concentrated
alloy regime is in general negligible.
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FIG. 1 (color online). Spin Hall conductivity �z
xy for the alloy

systems AuxPt1�x and AgxAu1�x. The full squares correspond to
calculations including vertex corrections while the open squares
represent calculations without vertex corrections. Results from
other ab initio investigations on the intrinsic SHE of pure Pt [10]
and Au [8,11] are included. Because of the different definitions
for the spin-current operator the results from Refs. [10,11] have
been multiplied by a factor of 2 for the sake of consistency.
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For the anomalous Hall effect it is known that one may
classify solid state materials according to the scaling rela-
tion between the AHC �xy and the longitudinal conductiv-

ity �xx. For metallic systems those fall in general into the
so-called ultraclean regime (�xx * 106 ð�cmÞ�1) the
skew-scattering mechanism should dominate �xy [30,31].

In this case the scaling relation �xy � �skew
xy ¼ S�xx holds

with S the so-called skewness factor. Assuming the same
to apply for the SHE as well, one may expect for the
extrinsic SHC the relation:

�z extr
xy ¼ �z skew

xy þ �
z sj
xy ¼ Sz�xx þ �

z sj
xy ; (4)

where Sz is the corresponding skewness factor and the term

�
z sj
xy represents the contribution due to the side-jump

mechanism.
Plotting the extrinsic SHC �z extr

xy of AuxPt1�x and

AgxAu1�x versus the corresponding �xx with the concen-
tration as an implicit parameter indeed a linear behavior is
found in the dilute regimes (x � 0:1 or x � 0:9), as can be
seen from Fig. 2. Fitting a straight line to the data for the
considered systems and extrapolating to �xx ¼ 0 allows
us to deduce the side-jump contribution on the basis of
Eq. (4). The results obtained for AuxPt1�x and AgxAu1�x

are shown in Fig. 3 together with data obtained for two

other alloy systems. Obviously, �
z sj
xy may take either sign

and is in most cases found to be much smaller than the
intrinsic contribution. On the other hand, �z skew

xy is domi-

nating in the dilute limit since it scales with the concen-
tration, while �z intr

xy does not depend on the concentration

explicitly. However, an actual impurity concentration for
the crossover between intrinsic and skew-scattering
regime depends on the considered alloy.
To support the analysis of the results for the total SHC

presented above, complementary work has been done us-
ing the Boltzmann formalism for the SHE [14]. The results
for�xx obtained this way are found in very good agreement
with those obtained using the Kubo-Greenwood equa-
tion (see top panel of Fig. 4). As mentioned above, the
vertex corrections giving rise to �z extr

xy correspond to the

scattering-in processes occurring in the Boltzmann formal-
ism. As it was demonstrated recently, the latter ones give
rise to the skew-scattering mechanism [14]. Corresponding
results for �z skew

xy (bottom panel of Fig. 4) are also found in

very satisfying agreement with the results based on the
Kubo-Středa-like formula [Eq. (3)] together with the de-
scribed decomposition. This finding convincingly shows
the equivalence of both approaches for the dilute alloy
regime and it also justifies once more the used definition
for the intrinsic SHC introduced above.
In summary, an expression for the spin Hall conductivity

�z
xy has been derived in analogy to the Kubo-Středa equa-

tion for the anomalous Hall conductivity �xy of ferromag-

nets. An implementation within the fully relativistic
KKR-CPA formalism allows material specific ab initio
investigations for various transition metal alloy systems
over the whole range of composition dealing with all
contributions to the SHC on the same footing. We decom-
pose the total SHC �z

xy into its intrinsic and extrinsic parts.

In the concentrated alloys the intrinsic contribution of the
effective medium always dominates. The extrinsic contri-
bution, on the other hand, shows in general a diverging
behavior in the dilute alloy regime that is ascribed to the
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FIG. 2 (color online). The extrinsic spin Hall conductivity
�z extr

xy versus the longitudinal conductivity �xx for AgxAu1�x

and AuxPt1�x (black line/circles). The blue and orange lines are
explained in the text.
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FIG. 3 (color online). The side-jump and intrinsic contribu-

tions to the spin Hall conductivity, �
z sj
xy and �z intr

xy , respectively,

for various dilute transition metal alloys AðBÞ with the concen-
tration of 1 at.% for the dissolved component B.
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skew-scattering contribution. Accompanying calculations
on the basis of the Boltzmann formalism demonstrate its
equivalence with the Kubo formalism in the dilute alloy
regime and support the decomposition made for the total
SHC �z

xy. At the moment clear-cut quantitative statements

concerning the composition of the samples are lacking in
experiment. In particular, for the spin-Hall-angle for Au
and Pt several different experimental values are reported.
From our study it is clear that especially in the dilute limit
the SHC shows a sensitive concentration dependence.
Experimental work is therefore needed to obtain SHC
data from well characterized samples over a broad concen-
tration range to clearly see the alloy behavior found in this
work.
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