2,864 research outputs found

    Spin Gap in the Single Spin-1/2 Chain Cuprate Sr1.9_{1.9}Ca0.1_{0.1}CuO3_3

    Full text link
    We report 63^{63}Cu nuclear magnetic resonance and muon spin rotation measurements on the S=1/2 antiferromagnetic Heisenberg spin chain compound Sr1.9_{1.9}Ca0.1_{0.1}CuO3_3. An exponentially decreasing spin-lattice relaxation rate 1/T1_1 indicates the opening of a spin gap. This behavior is very similar to what has been observed for the cognate zigzag spin chain compound Sr0.9_{0.9}Ca0.1_{0.1}CuO2_2, and confirms that the occurrence of a spin gap upon Ca doping is independent of the interchain exchange coupling J′J'. Our results therefore generally prove the appearance of a spin gap in an antiferromagnetic Heisenberg spin chain induced by a local bond disorder of the intrachain exchange coupling JJ. A low temperature upturn of 1/T1_1 evidences growing magnetic correlations. However, zero field muon spin rotation measurements down to 1.5 K confirm the absence of magnetic order in this compound which is most likely suppressed by the opening of the spin gap.Comment: 5 pages, 4 figure

    Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers

    Get PDF
    We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous semiconductor laser devices. The QMBE are derived from fully quantum mechanical operator dynamics describing the interaction of the light field with the quantum states of the electrons and the holes near the band gap. By taking into account field-field correlations and field-dipole correlations, the QMBE include quantum noise effects which cause spontaneous emission and amplified spontaneous emission. In particular, the source of spontaneous emission is obtained by factorizing the dipole-dipole correlations into a product of electron and hole densities. The QMBE are formulated for general devices, for edge emitting lasers and for vertical cavity surface emitting lasers, providing a starting point for the detailed analysis of spatial coherence in the near field and far field patterns of such laser diodes. Analytical expressions are given for the spectra of gain and spontaneous emission described by the QMBE. These results are applied to the case of a broad area laser, for which the frequency and carrier density dependent spontaneous emission factor beta and the evolution of the far field pattern near threshold are derived.Comment: 22 pages RevTex and 7 figures, submitted to Phys.Rev.A, revisions in abstract and in the discussion of temporal coherenc

    High Adenylyl Cyclase Activity and \u3cem\u3eIn Vivo\u3c/em\u3e cAMP Fluctuations in Corals Suggest Central Physiological Role

    Get PDF
    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had \u3e1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels

    Boltzmann equation and hydrodynamic fluctuations

    Full text link
    We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics.Comment: This is a more detailed version of a related paper: I.V. Karlin, M. Colangeli, M. Kroger, PRL 100 (2008) 214503, arXiv:0801.2932. It contains comparison between predictions and experiment, in particular. 11 pages, 6 figures, 2 table

    Impact of different leaf velocities and dose rates on the number of monitor units and the dose-volume-histograms using intensity modulated radiotherapy with sliding-window technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intensity modulated radiotherapy (IMRT) using sliding window technique utilises a leaf sequencing algorithm, which takes some control system limitations like dose rates (DR) and velocity of the leafs (LV) into account. The effect of altering these limitations on the number of monitor units and radiation dose to the organs at risk (OAR) were analysed.</p> <p>Methods</p> <p>IMRT plans for different LVs from 1.0 cm/sec to 10.0 cm/sec and different DRs from 100 MU/min to 600 MU/min for two patients with prostate cancer and two patients with squamous cell cancer of the scalp (SCCscalp) were calculated using the same "optimal fluence map". For each field the number of monitor units, the dose volume histograms and the differences in the "actual fluence maps" of the fields were analysed.</p> <p>Results</p> <p>With increase of the DR and decrease of the LV the number of monitor units increased and consequentially the radiation dose given to the OAR. In particular the serial OARs of patients with SCCscalp, which are located outside the end position of the leafs and inside the open field, received an additional dose of a higher DR and lower LV is used.</p> <p>Conclusion</p> <p>For best protection of organs at risk, a low DR and high LV should be applied. But the consequence of a low DR is both a long treatment time and also that a LV of higher than 3.0 cm/sec is mechanically not applicable. Our recommendation for an optimisation of the discussed parameters is a leaf velocity of 2.5 cm/sec and a dose rate of 300–400 MU/min (prostate cancer) and 100–200 MU/min (SCCscalp) for best protection of organs at risk, short treatment time and number of monitor units.</p

    Magnetic frustration, phase competition and the magneto-electric effect in NdFe3(BO3)4

    Full text link
    We present an element selective resonant magnetic x-ray scattering study of NdFe3(BO3)4 as a function of temperature and applied magnetic field. Our measurements show that the magnetic order of the Nd sublattice is induced by the Fe spin order. When a magnetic field is applied parallel to the hexagonal basal plane, the helicoidal spin order is suppressed and a collinear ordering, where the moments are forced to align in a direction perpendicular to the applied magnetic field, is stabilized. This result excludes a non-collinear spin order as the origin of the magnetically induced electric polarization in this compound. Instead our data imply that magnetic frustration results in a phase competition, which is the origin of the magneto-electric response.Comment: 5 pages, 3 figure

    Probing liquid surface waves, liquid properties and liquid films with light diffraction

    Full text link
    Surface waves on liquids act as a dynamical phase grating for incident light. In this article, we revisit the classical method of probing such waves (wavelengths of the order of mm) as well as inherent properties of liquids and liquid films on liquids, using optical diffraction. A combination of simulation and experiment is proposed to trace out the surface wave profiles in various situations (\emph{eg.} for one or more vertical, slightly immersed, electrically driven exciters). Subsequently, the surface tension and the spatial damping coefficient (related to viscosity) of a variety of liquids are measured carefully in order to gauge the efficiency of measuring liquid properties using this optical probe. The final set of results deal with liquid films where dispersion relations, surface and interface modes, interfacial tension and related issues are investigated in some detail, both theoretically and experimentally. On the whole, our observations and analyses seem to support the claim that this simple, low--cost apparatus is capable of providing a wealth of information on liquids and liquid surface waves in a non--destructive way.Comment: 25 pages, 12 figures, to appear in Measurement Science and Technology (IOP

    The OPERA experiment Target Tracker

    Get PDF
    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method

    Marine harmful algal blooms, human health and wellbeing : challenges and opportunities in the 21st century

    Get PDF
    Author Posting. © Marine Biological Association of the United Kingdom, 2015. This is the author's version of the work. It is posted here by permission of Marine Biological Association of the United Kingdom for personal use, not for redistribution. The definitive version was published in Journal of the Marine Biological Association of the United Kingdom 96 (2016): 61-91, doi:10.1017/S0025315415001733.Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (valued fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, there is an urgent need to prevent and mitigate HABs’ impacts on human health and wellbeing. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects to understand the relevance of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing.The research was funded in part by the UK Medical Research Council (MRC) and UK Natural Environment Research Council (NERC) for the MEDMI Project; the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Change and Health at the London School of Hygiene and Tropical Medicine in partnership with Public Health England (PHE), and in collaboration with the University of Exeter, University College London and the Met Office; and the European Regional Development Fund Programme and European Social Fund Convergence Programme for Cornwall and the Isles of Scilly (University of Exeter Medical School). EB was supported by the CTM2014-53818-R project, from the Spanish Government (MINECO). KDA was in receipt of funding from the BBSRC-NERC research programme for multidisciplinary studies in sustainable aquaculture: health, disease and the environment. P. Hess was supported by Ifremer (RISALTOX) and the Regional Council of the Pays de la Loire (COSELMAR). Porter Hoagland was supported by the US National Science Foundation under NSF/CNH grant no. 1009106.2016-05-2
    • …
    corecore