6,811 research outputs found
Construction productivity analysis for asphalt concrete pavement rehabilitation in urban corridors
The results of a constructibility and productivity analysis for the California Department of Transportation Long Life Asphalt Concrete Pavement Rehabilitation Strategies program are presented. With the assistance of California asphalt concrete (AC) paving contractors, the analysis explored the effects on construction productivity of rehabilitation materials, design strategy (crack seat and overlay, full-depth replacement), layer profiles, AC cooling time, resource constraints, and alternative lane closure tactics. Deterministic and stochastic analysis programs were developed. A sensitivity study that examined the construction production capability within a 55-h weekend closure was performed. Weekend closures were also compared with continuous closures. Demolition and AC delivery truck flows were the major constraints limiting the AC rehabilitation production capability. It was concluded from the study that efficient lane closure tactics designed to work with the pavement profile (an minimize the nonworking time to increase the construction product! on efficiency. The results of the study will help road agencies evaluate rehabilitation strategies and tactics with the goal of balancing the maximization of production capability and minimization of traffic delay during urban pavement rehabilitation.open114sciescopu
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
Direct photon production with effective field theory
The production of hard photons in hadronic collisions is studied using
Soft-Collinear Effective Theory (SCET). This is the first application of SCET
to a physical, observable cross section involving energetic partons in more
than two directions. A factorization formula is derived which involves a
non-trivial interplay of the angular dependence in the hard and soft functions,
both quark and gluon jet functions, and multiple partonic channels. The
relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed
inclusive direct photon distribution is valid to next-to-next-to-leading
logarithmic order (NNLL), one order beyond previous work. The result is
improved by including non-logarithmic terms and photon isolation cuts through
matching, and compared to Tevatron data and to fixed order results at the
Tevatron and the LHC. The resummed cross section has a significantly smaller
theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos;
v4: typos, corrections in (16), (47), (72
Factorization and resummation of s-channel single top quark production
In this paper we study the factorization and resummation of s-channel single
top quark production in the Standard Model at both the Tevatron and the LHC. We
show that the production cross section in the threshold limit can be factorized
into a convolution of hard function, soft function and jet function via
soft-collinear-effective-theory (SCET), and resummation can be performed using
renormalization group equation in the momentum space resummation formalism. We
find that in general, the resummation effects enhance the Next-to-Leading-Order
(NLO) cross sections by about at both the Tevatron and the LHC, and
significantly reduce the factorization scale dependence of the total cross
section at the Tevatron, while at the LHC we find that the factorization scale
dependence has not been improved, compared with the NLO results.Comment: 29 pages, 7 figures; version published in JHE
The Quark Beam Function at NNLL
In hard collisions at a hadron collider the most appropriate description of
the initial state depends on what is measured in the final state. Parton
distribution functions (PDFs) evolved to the hard collision scale Q are
appropriate for inclusive observables, but not for measurements with a specific
number of hard jets, leptons, and photons. Here the incoming protons are probed
and lose their identity to an incoming jet at a scale \mu_B << Q, and the
initial state is described by universal beam functions. We discuss the
field-theoretic treatment of beam functions, and show that the beam function
has the same RG evolution as the jet function to all orders in perturbation
theory. In contrast to PDF evolution, the beam function evolution does not mix
quarks and gluons and changes the virtuality of the colliding parton at fixed
momentum fraction. At \mu_B, the incoming jet can be described perturbatively,
and we give a detailed derivation of the one-loop matching of the quark beam
function onto quark and gluon PDFs. We compute the associated NLO Wilson
coefficients and explicitly verify the cancellation of IR singularities. As an
application, we give an expression for the next-to-next-to-leading logarithmic
order (NNLL) resummed Drell-Yan beam thrust cross section.Comment: 54 pages, 9 figures; v2: notation simplified in a few places, typos
fixed; v3: journal versio
Towards a safe and effective chlamydial vaccine: lessons from the eye.
As well as being the most common bacterial sexually transmitted infection, Chlamydia trachomatis (Ct) is the leading infectious cause of blindness. The pathogenesis of ocular chlamydial infection (trachoma) is similar to that of genital infection. In the 1960s the efficacy of Ct vaccines against ocular infection was evaluated in major field trials in Saudi Arabia, Taiwan, The Gambia, India and Ethiopia. These trials showed that it was possible to induce short term immunity to ocular infection, and to reduce the incidence of inflammatory trachoma, by parenteral immunisation with killed or live whole organism vaccines. In one study, it was also shown that the incidence of scarring sequelae was reduced in vaccinated children. Detailed studies in non-human primates conducted at this time suggested that vaccination could lead to more severe inflammatory disease on subsequent challenge. Since that time there have been many studies on the immunological correlates of protective immunity and immunopathology in ocular Ct infection in humans and non-human primates, and on host genetic polymorphisms associated with protection from adverse sequelae. These have provided important information to guide the development and evaluation of a human Ct vaccine
InGaN nano-ring structures for high-efficiency light emitting diodes
A technique based on the Fresnel diffraction effect for the fabrication of nano-scale site-controlled ring structures in InGaN/GaN multi-quantum well structures has been demonstrated. The ring structures have an internal diameter of 500 nm and a wall width of 300 nm. A 1 cm-1 Raman shift has been measured, signifying substantial strain relaxation from the fabricated structure. The 9 nm blueshift observed in the cathodoluminescence spectra can be attributed to band filling and/or screening of the piezoelectric field. A light emitting diode based on this geometry has been demonstrated. © 2005 American Institute of Physics.published_or_final_versio
Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly
Using methods from effective field theory, we develop a novel, systematic
framework for the calculation of the cross sections for electroweak gauge-boson
production at small and very small transverse momentum q_T, in which large
logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross
sections receive logarithmically enhanced corrections from two sources: the
running of the hard matching coefficient and the collinear factorization
anomaly. The anomaly leads to the dynamical generation of a non-perturbative
scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from
receiving large long-distance hadronic contributions. Expanding the cross
sections in either \alpha_s or q_T generates strongly divergent series, which
must be resummed. As a by-product, we obtain an explicit non-perturbative
expression for the intercept of the cross sections at q_T=0, including the
normalization and first-order \alpha_s(q_*) correction. We perform a detailed
numerical comparison of our predictions with the available data on the
transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure
Anisotropic Structure of the Order Parameter in FeSe0.45Te0.55 Revealed by Angle Resolved Specific Heat
The symmetry and structure of the superconducting gap in the Fe-based
superconductors are the central issue for understanding these novel materials.
So far the experimental data and theoretical models have been highly
controversial. Some experiments favor two or more constant or nearly-constant
gaps, others indicate strong anisotropy and yet others suggest gap zeros
("nodes"). Theoretical models also vary, suggesting that the absence or
presence of the nodes depends quantitatively on the model parameters. An
opinion that has gained substantial currency is that the gap structure, unlike
all other known superconductors, including cuprates, may be different in
different compounds within the same family. A unique method for addressing this
issue, one of the very few methods that are bulk and angle-resolved, calls for
measuring the electronic specific heat in a rotating magnetic field, as a
function of field orientation with respect to the crystallographic axes. In
this Communication we present the first such measurement for an Fe-based
high-Tc superconductor (FeBSC). We observed a fourfold oscillation of the
specific heat as a function of the in-plane magnetic field direction, which
allowed us to identify the locations of the gap minima (or nodes) on the Fermi
surface. Our results are consistent with the expectations of an extended s-wave
model with a significant gap anisotropy on the electron pockets and the gap
minima along the \Gamma M (or Fe-Fe bond) direction.Comment: 32 pages, 7 figure
Early (and Later) LHC Search Strategies for Broad Dimuon Resonances
Resonance searches generally focus on narrow states that would produce a
sharp peak rising over background. Early LHC running will, however, be
sensitive primarily to broad resonances. In this paper we demonstrate that
statistical methods should suffice to find broad resonances and distinguish
them from both background and contact interactions over a large range of
previously unexplored parameter space. We furthermore introduce an angular
measure we call ellipticity, which measures how forward (or backward) the muon
is in eta, and allows for discrimination between models with different parity
violation early in the LHC running. We contrast this with existing angular
observables and demonstrate that ellipticity is superior for discrimination
based on parity violation, while others are better at spin determination.Comment: 31 pages, 19 figures. References added, minor modifications made to
section
- …
