48 research outputs found
Inhibition of glucuronidation in pancreatic cancer improves gemcitabine anticancer activity
Pancreatic ductal adenocarcinoma (PDAC) treatmentis focused on two regimens. The polychemotherapy, FOLFIRINOX (folinic acid, fluorouracil, irinotecan, oxali-platin), is used in patients with good health conditions, while gemcitabine, as monotherapy, in patients withpoor health conditions. Gemcitabine resistance-associated pathways have been targeted to sensitize cancercells, but the results were disappointing. Using a transcrip-tomic bioinformatics analysis combined with biologicalvalidation, we showed that glucuronidation was associated with the gemcitabine resistance in PDAC, and its inhibition could switch tumors from resistant to sensitive.To unravel the biological drivers of gemcitabineresponse in PDAC, we determined the transcriptomic dissimilarity between two preclinical models with definedgemcitabine sensitivity.Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Meilerman Abuelafia, Analía. Inserm; FranciaFil: Chanez, Brice. Inserm; FranciaFil: Bigonnet, Martin. Inserm; FranciaFil: Gayet, Odile. Inserm; FranciaFil: Roques, Julie. Inserm; FranciaFil: Chuluyan, Hector Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Dusetti, Nelson. Inserm; FranciaFil: Iovanna, Juan Lucio. Inserm; Franci
Evidencing a pancreatic ductal adenocarcinoma subpopulation sensitive to the proteasome inhibitor Carfilzomib
Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a survival rate less than 5%. Multiple chemotherapeutic drugs have been tested to improve patient prognosis; however, the clinical efficacy of these treatments is low. One of the most controversial family of drugs are the proteasome inhibitors, which have displayed promising effects in preclinical studies, but low clinical performance. Here, we unravel a specific transcriptomic signature that discriminates a subgroup of patients sensitive to the proteasome inhibitor carfilzomib. Experimental Design: First, we identified a subpopulation of PDAC-derived primary cells cultures (PDPCC) sensitive to the proteasome inhibitor carfilzomib. Then, we selected a transcriptomic signature that predicts carfilzomib chemosensitivity using independent component analysis on the transcriptome of PDPCC. Finally, we validated the signature in an independent cohort of PDAC biopsy-derived pancreatic organoids. Results: Sensitive phenotype was characterized by a high expression of genes related with a cornified/squamous pathway and a downregulation of epithelial-mesenchymal transition genes. Interestingly, carfilzomib-sensitive transcriptomic profile did not show any association with the proteasome activity but strongly correlates with ATF4 and CHOP expression, which are key markers of the unfolded protein response and critical to trigger the cell death program. Concordantly, sensitive phenotype showed a high level of the de novo RNA and protein synthesis compared with the resistant one and, most important, cell death induced by carfilzomib is dependent of the translational activity. Conclusions: We demonstrate the existence of a carfilzomib-sensitive PDAC subgroup with a specific transcriptomic phenotype that could explain the biological reason for this responsiveness.Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina. Inserm; FranciaFil: Meilerman Abuelafia, Miriam Analia. Inserm; FranciaFil: Bigonnet, Martin. Inserm; FranciaFil: Gayet, Odile. Inserm; FranciaFil: Roque, Julie. Inserm; FranciaFil: Telle, Emmanuel. Inserm; FranciaFil: Santofimia-Castaño, Patricia. Inserm; FranciaFil: Borrello, Maria Teresa. Inserm; FranciaFil: Chuluyan, Hector Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Dusetti, Nelson. Inserm; FranciaFil: Iovanna, Juan Lucio. Inserm; Franci
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models
Purpose: Compare pancreatic ductal adenocarcinoma (PDAC), preclinical models, by their transcriptome and drug response landscapes to evaluate their complementarity. Experimental De-sign: Three paired PDAC preclinical models—patient‐derived xenografts (PDX), xenograft‐derived pancreatic organoids (XDPO) and xenograft‐derived primary cell cultures (XDPCC)—were derived from 20 patients and analyzed at the transcriptomic and chemosensitivity level. Transcriptomic characterization was performed using the basal‐like/classical subtyping and the PDAC molecular gradient (PAMG). Chemosensitivity for gemcitabine, irinotecan, 5‐fluorouracil and oxaliplatin was established and the associated biological pathways were determined using independent component analysis (ICA) on the transcriptome of each model. The selection criteria used to identify the different components was the chemosensitivity score (CSS) found for each drug in each model. Results: PDX was the most dispersed model whereas XDPO and XDPCC were mainly classical and basal-like, respectively. Chemosensitivity scoring determines that PDX and XDPO display a positive correlation for three out of four drugs tested, whereas PDX and XDPCC did not correlate. No match was observed for each tumor chemosensitivity in the different models. Finally, pathway analysis shows a significant association between PDX and XDPO for the chemosensitivity‐associated pathways and PDX and XDPCC for the chemoresistance‐associated pathways. Conclusions: Each PDAC preclinical model possesses a unique basal‐like/classical transcriptomic phenotype that strongly in-fluences their global chemosensitivity. Each preclinical model is imperfect but complementary, sug-gesting that a more representative approach of the clinical reality could be obtained by combining them. Translational Relevance: The identification of molecular signatures that underpin drug sensitivity to chemotherapy in PDAC remains clinically challenging. Importantly, the vast majority of studies using preclinical in vivo and in vitro models fail when transferred to patients in a clinical setting despite initially promising results. This study presents for the first time a comparison between three preclinical models directly derived from the same patients. We show that their applica-bility to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features.Fil: Hoare, Owen. Centre National de la Recherche Scientifique; FranciaFil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Elkaoutari, Abdessamad. Centre National de la Recherche Scientifique; FranciaFil: Gayet, Odile. Centre National de la Recherche Scientifique; FranciaFil: Bigonnet, Martin. Centre National de la Recherche Scientifique; FranciaFil: Roques, Julie. Centre National de la Recherche Scientifique; FranciaFil: Nicolle, Rémy. No especifíca;Fil: McGuckin, Colin. Cell Therapy Research Institute; FranciaFil: Forraz, Nico. Cell Therapy Research Institute; FranciaFil: Sohier, Emilie. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Tonon, Laurie. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Wajda, Pauline. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Boyault, Sandrine. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Attignon, Valéry. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Tabone, Luciana Belen. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Barbier, Sandrine. No especifíca;Fil: Mignard, Caroline. No especifíca;Fil: Duchamp, Olivier. No especifíca;Fil: Iovanna, Juan. Centre National de la Recherche Scientifique; FranciaFil: Dusetti, Nelson J.. Centre National de la Recherche Scientifique; Franci
Gene expression profiling of patient‐derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: implications for individualized medicine efforts
Abstract c‐MYC controls more than 15% of genes responsible for proliferation, differentiation, and cellular metabolism in pancreatic as well as other cancers making this transcription factor a prime target for treating patients. The transcriptome of 55 patient‐derived xenografts show that 30% of them share an exacerbated expression profile of MYC transcriptional targets (MYC‐high). This cohort is characterized by a high level of Ki67 staining, a lower differentiation state, and a shorter survival time compared to the MYC‐low subgroup. To define classifier expression signature, we selected a group of 10 MYC target transcripts which expression is increased in the MYC‐high group and six transcripts increased in the MYC‐low group. We validated the ability of these markers panel to identify MYC‐high patient‐derived xenografts from both: discovery and validation cohorts as well as primary cell cultures from the same patients. We then showed that cells from MYC‐high patients are more sensitive to JQ1 treatment compared to MYC‐low cells, in monolayer, 3D cultured spheroids and in vivo xenografted tumors, due to cell cycle arrest followed by apoptosis. Therefore, these results provide new markers and potentially novel therapeutic modalities for distinct subgroups of pancreatic tumors and may find application to the future management of these patients within the setting of individualized medicine clinics
Development of transcriptomic tools for predicting the response to individual drug of the mFOLFIRINOX regimen in patients with metastatic pancreatic cancer
International audienceBackground: The utilization of modified FOLFIRINOX (mFFX) therapy has shown notable advancements in patient outcomes in both localized and metastatic PDAC. Nevertheless, the effectiveness of mFFX treatment comes at the cost of elevated toxicity, leading to its restriction to patients with adequate performance status. Consequently, the administration of mFFX is contingent upon patient performance rather than rational criteria. The ideal scenario would involve the ability to assess the sensitivity of each drug within the mFFX regimen, minimizing unnecessary toxicity without compromising clinical benefits.Methods: We developed transcriptomic signatures for each drug of the mFFX regimen (5FU, oxaliplatin and irinotecan) by integrating transcriptomic data from PDC, PDO and PDX with their corresponding chemo-response profiles to capture the biological components responsible for the response to each drug. We further validated the signatures in a cohort of 167 patients with advanced and metastatic PDAC.Results: All three signatures captured high responder patients for OS and PFS in the mFFX arm exclusively. We then studied the response of patients to 0, 1, 2 and 3 drugs and we identified a positive correlation between the number of drugs predicted as sensitive and the OS and PFS, and the with objective response rate.Conclusions: We developed three novel transcriptome-based signatures which define sensitivity for each mFFX components that can be used to rationalize the administration of the mFFX regimen in patients with metastatic pancreatic cancer and could help to avoid unnecessary toxic effects.</div
Basal‐like and classical cells coexist in pancreatic cancer revealed by single‐cell analysis on biopsy‐derived pancreatic cancer organoids from the classical subtype
Basal-like and Classical cells coexistence in pancreatic cancer revealed by single cell analysis
SummaryPancreatic ductal adenocarcinoma (PDAC) is composed of stromal, immune and epithelial cells. Transcriptomic analysis of the epithelial compartment allows a binary classification into mainly two phenotypic subtypes, classical and basal-like. However, little is known about the intra-tumor heterogeneity of the epithelial component. Growing evidences suggest that this two side phenotypic segregation is not so clear and that both could coexist in a single tumor. In order to elucidate this hypothesis, we performed single-cell transcriptomic analyses using combinational barcoding on epithelial cells from 6 different classical PDAC obtained by Endoscopic Ultrasound (EUS) with Fine Needle Aspiration (FNA). In order to purify the epithelial compartment, PDAC were grown as Biopsy Derived Pancreatic Cancer Organoids. Single cell transcriptomic analysis allowed the identification of 4 main cell clusters present in different proportions in all tumors. Remarkably, although these tumors were classified as Classical, one of the clusters corresponded to a basal-like. These results depict the unanticipated high heterogeneity of pancreatic cancers and demonstrated that basal-like cells with a high aggressive phenotype are more widespread than expected.</jats:p
Basal‐like and classical cells coexist in pancreatic cancer revealed by single‐cell analysis on biopsy‐derived pancreatic cancer organoids from the classical subtype
International audiencePancreatic ductal adenocarcinoma (PDAC) is composed of stromal, immune, and cancerous epithelial cells. Transcriptomic analysis of the epithelial compartment allows classification into different phenotypic subtypes as classical and basal-like. However, little is known about the intra-tumor heterogeneity particularly in the epithelial compartment. Growing evidences suggest that this phenotypic segregation is not so precise and different cancerous cell types may coexist in a single tumor. To test this hypothesis, we performed single-cell transcriptomic analyses using combinational barcoding exclusively on epithelial cells from six different classical PDAC patients obtained by Endoscopic Ultrasound (EUS) with Fine Needle Aspiration (FNA). To purify the epithelial compartment, PDAC were grown as biopsy-derived pancreatic cancer organoids. Single-cell transcriptomic analysis allowed the identification of four main cell clusters present in different proportions in all tumors. Remarkably, although all these tumors were classified as classical, one cluster present in all corresponded to a basal-like phenotype. These results reveal an unanticipated high heterogeneity of pancreatic cancers and demonstrate that basal-like cells, which have a highly aggressive phenotype, are more widespread than expected
