15,262 research outputs found

    Super Five Brane Hamiltonian and the Chiral Degrees of Freedom

    Full text link
    We construct the Hamiltonian of the super five brane in terms of its physical degrees of freedom. It does not depend on the inverse of the induced metric. Consequently, some singular configurations are physically admissible, implying an interpretation of the theory as a multiparticle one. The symmetries of the theory are analyzed from the canonical point of view in terms of the first and second class constraints. In particular it is shown how the chiral sector may be canonically reduced to its physical degrees of freedom.Comment: 16 pages, typos correcte

    Minimum Conductivity and Evidence for Phase Transitions in Ultra-clean Bilayer Graphene

    Get PDF
    Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number of singly- and doubly-gated bilayer graphene (BLG) devices, we show that an insulating state appears only in devices with high mobility and low extrinsic doping. This insulating state has an associated transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly suggesting a gapped broken symmetry state that is destroyed by very weak disorder. The transition to the intrinsic broken symmetry state can be tuned by disorder, out-of-plane electric field, or carrier density

    Suppression of static stripe formation by next-neighbor hopping

    Full text link
    We show from real-space Hartree-Fock calculations within the extended Hubbard model that next-nearest neighbor (t') hopping processes act to suppress the formation of static charge stripes. This result is confirmed by investigating the evolution of charge-inhomogeneous corral and stripe phases with increasing t' of both signs. We propose that large t' values in YBCO prevent static stripe formation, while anomalously small t' in LSCO provides an additional reason for the appearance of static stripes only in these systems.Comment: 4 pages, 5 figure

    Evidence for Fermi surface reconstruction in the static stripe phase of La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_{4}, x=1/8x=1/8

    Full text link
    We present a photoemission study of La0.8−x_{0.8-x}Eu0.2_{0.2}Srx_xCuO4_{4} with doping level xx=1/8, where the charge carriers are expected to order forming static stripes. Though the local probes in direct space seem to be consistent with this idea, there has been little evidence found for such ordering in quasiparticle dispersions. We show that the Fermi surface topology of the 1/8 compound develops notable deviations from that observed for La2−x_{2- x}Srx_xCuO4_{4} in a way consistent with the FS reconstruction expected for the scattering on the antiphase stripe order

    Coulomb-driven broken-symmetry states in doubly gated suspended bilayer graphene

    Full text link
    The non-interacting energy spectrum of graphene and its bilayer counterpart consists of multiple degeneracies owing to the inherent spin, valley and layer symmetries. Interactions among charge carriers are expected to spontaneously break these symmetries, leading to gapped ordered states. In the quantum Hall regime these states are predicted to be ferromagnetic in nature whereby the system becomes spin polarized, layer polarized or both. In bilayer graphene, due to its parabolic dispersion, interaction-induced symmetry breaking is already expected at zero magnetic field. In this work, the underlying order of the various broken-symmetry states is investigated in bilayer graphene that is suspended between top and bottom gate electrodes. By controllably breaking the spin and sublattice symmetries we are able to deduce the order parameter of the various quantum Hall ferromagnetic states. At small carrier densities, we identify for the first time three distinct broken symmetry states, one of which is consistent with either spontaneously broken time-reversal symmetry or spontaneously broken rotational symmetry

    Herschel/HIFI observations of molecular emission in protoplanetary nebulae and young planetary nebulae

    Get PDF
    We performed Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared/submillimeter range in a sample of ten protoplanetary nebulae and young planetary nebulae. The high spectral resolution provided by HIFI yields accurate measurements of the line profiles. The observation of these high-energy transitions allows an accurate study of the excitation conditions, particularly in the warm gas, which cannot be properly studied from the low-energy lines. We have detected FIR/sub-mm lines of several molecules, in particular of 12CO, 13CO, and H2O. Emission from other species, like NH3, OH, H2^{18}O, HCN, SiO, etc, has been also detected. Wide profiles showing sometimes spectacular line wings have been found. We have mainly studied the excitation properties of the high-velocity emission, which is known to come from fast bipolar outflows. From comparison with general theoretical predictions, we find that CRL 618 shows a particularly warm fast wind, with characteristic kinetic temperature Tk >~ 200 K. In contrast, the fast winds in OH 231.8+4.2 and NGC 6302 are cold, Tk ~ 30 K. Other nebulae, like CRL 2688, show intermediate temperatures, with characteristic values around 100 K. We also discuss how the complex structure of the nebulae can affect our estimates, considering two-component models. We argue that the differences in temperature in the different nebulae can be due to cooling after the gas acceleration (that is probably due to shocks); for instance, CRL 618 is a case of very recent acceleration, less than ~ 100 yr ago, while the fast gas in OH 231.8+4.2 was accelerated ~ 1000 yr ago. We also find indications that the densest gas tends to be cooler, which may be explained by the expected increase of the radiative cooling efficiency with the density.Comment: 24 pages, 31 figure

    Superconducting phase coherence in striped cuprates

    Full text link
    We study the problem of phase coherence in doped striped cuprates. We assume the stripes to form a network of one-dimensional Luttinger liquids which are dominated by superconducting fluctuations and pinned by impurities. The problem of phase coherence is discussed. We study the dynamics of the superconducting phase using a model of resistively shunted junctions which leads to a Kosterlitz-Thouless transition. We show that our results are consistent with recent experiments in Zn-doped cuprates. We also explain the scaling of the superconducting critical temperature TcT_c with the incommensurability as seen in recent neutron scattering experiments and predict the behavior of Hc2H_{c2} in the underdoped region.Comment: Final version to appear in Physical Review Letters with a new reference to an earlier work of F.Guinea and G.Zymanyi on Luttinger network

    Effect of disorder on the ground-state properties of graphene

    Get PDF
    We calculate the ground-state energy of Dirac electrons in graphene in the presence of disorder. We take randomly distributed charged impurities at a fixed distance from the graphene sheet and surface fluctuations (ripples) as the main scattering mechanisms. Mode-coupling approach to scattering rate and random-phase approximation for ground-state energy incorporating the many-body interactions and the disorder effects yields good agreement with experimental inverse compressibility.Comment: Extended introduction and discussion. To appear in Phys. Rev.
    • …
    corecore