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We calculate the ground-state energy of Dirac electrons in graphene in the presence of disorder. We take
randomly distributed charged impurities at a fixed distance from the graphene sheet and surface fluctuations
�ripples� as the main scattering mechanisms. A mode-coupling approach to the scattering rate and random-
phase approximation for the ground-state energy incorporating the many-body interactions and the disorder
effects yields good agreement with the experimental inverse compressibility.
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I. INTRODUCTION

Two-dimensional crystals of carbon atoms �graphene�
have recently been discovered.1 Graphene is a single, one-
atom-thick sheet of carbon atoms arranged in a honeycomb
lattice. High-quality graphene single crystals some thousands
of �m2 in size are sufficient for most fundamental physics
studies.2 There are significant efforts to grow graphene
epitaxially3 by thermal decomposition of SiC, or by vapor
deposition of hydrocarbons on catalytic metallic surfaces,
which could later be etched away, leaving graphene on an
insulating substrate.

This stable crystal has attracted considerable attention be-
cause of its unusual effective many-body properties,4 quasi-
particle properties, and Landau Fermi liquid picture,5 and the
effect of electron-electron interactions on plasmon behavior
and angle-resolved photoemission spectroscopy6 that follow
from the chiral band states, and also because of potential
applications. The low-energy quasiparticle excitations in
graphene are linearly dispersing, described by Dirac cones at
the edges of the first Brillouin zone. It is very hard for alien
atoms to replace the carbon atoms in the graphene structure
because of the robustness and specificity of the � bonding.
Because of that, the electron mean free path l in graphene
can be very large. One of the important issues in graphene is
its quantum transport properties; it has universal minimum
conductivity at the Dirac point. Initially, it was believed that
this universality is a native property7 but recent
experimental8,9 and theoretical10–14 reports indicate that the
transport properties are very sensitive to impurities and de-
fects, and the minimum conductivity is not universal.

Conventional two-dimensional electron gases �2DEGs�
have been a fertile source of surprising new physics for more
than four decades. Although the exploration of graphene is
still at an early stage, it is already clear7 that the strong-field
properties of Dirac electrons in graphene are different from
and as rich as those of a semiconductor heterojunction
2DEG. The Fermi liquid phenomenology of Dirac electrons
in graphene5,6 and a conventional 2DEG15 has the same
structure, since both systems are isotropic and have a single
circular Fermi surface. The strength of interaction effects in a
conventional 2DEG increases with decreasing carrier den-

sity. At low densities, the quasiparticle weight Z is small, the
velocity is suppressed,15 the charge compressibility changes
sign from positive to negative,16 and the spin susceptibility is
strongly enhanced.15 These effects emerge from an interplay
between exchange interactions and quantum fluctuations of
charge and spin in the 2DEG.

In the Dirac electrons in graphene, it was shown4–6 that
interaction effects also become noticeable with decreasing
density, although more slowly, that the quasiparticle weight
Z tends to larger values, that the velocity is enhanced rather
than suppressed, and that the influence of interactions on the
compressibility and the spin susceptibility changes sign.
These qualitative differences are due to exchange interac-
tions between electrons near the Fermi surface and electrons
in the negative energy sea, and to interband contributions to
Dirac electrons from charge and spin fluctuations.

Compressibility measurements of conventional 2DEGs
have been carried out,17 and it is found qualitatively that
Coulomb interactions affect the compressibility at suffi-
ciently low electron density or strong-coupling-constant re-
gion. Recently, the local compressibility of graphene has
been measured18 using a scannable single-electron transistor,
and it is argued that the measured compressibility is well
described by the kinetic energy contribution, and it is sug-
gested that the exchange and correlation effects have cancel-
ing contributions. From the theoretical point of view, the
compressibility was first calculated by Peres et al.19 by con-
sidering the exchange contribution to the noninteracting
doped or undoped graphene flake. A related quantity �� /�n
�where � is the chemical potential and n is the electron den-
sity� was recently considered by Hwang et al.20 within the
same approximation. Going beyond the exchange contribu-
tion, the correlation effects were taken into account by Barlas
et al.4 based on an evaluation of graphene’s exchange and
random-phase approximation �RPA� correlation energies.
Moreover, Sheehy and Schmalian,21 by exploiting the prox-
imity to the relativistic electron quantum critical point, de-
rived explicit expressions for the temperature and density
dependence of the compressibility properties of graphene.
All these theoretical efforts have been carried out for clean
systems. Since disorder is unavoidable in any material, there
has been great interest in trying to understand how disorder
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affects the physics of electrons in materials, especially here
in graphene and its transport properties.

Our aim in this work is to study the ground-state proper-
ties in the presence of electron-impurity and electron-
electron interactions. For this purpose, we use the self-
consistent theory of Götze22 to calculate the scattering rate,
ground-state energy, and compressibility of the system at the
level of the RPA including disorder effects. Our calculation
is in the same spirit as our earlier work on conventional
2DEGs.16 We note that recent work of Adam et al.10 also
uses a self-consistent approach, where the impurity scattering
by the charge carriers is treated self-consistently in the RPA
and the static conductivity is calculated in the Boltzmann
kinetic theory. Thus, the main difference between the present
work and that of Adam et al.10 is that we are interested in a
thermodynamic quantity �compressibility�, whereas the latter
is aimed at calculating a transport property �conductivity�.
We also remark that direct solution of the Dirac equation for
Dirac-like electrons incorporating the charge impurities has
been discussed by Novikov23 and the validity of the Born
approximation is seriously questioned. Similar work has
been carried out by Pereira et al.,12 in which they studied the
problem of the Coulomb charge and calculated the local den-
sity of states and the local charge by solving the Dirac equa-
tion. They found new characteristics of bound states and
strong renormalization of the Van Hove singularities in the
lattice description that go beyond the Dirac equation.

In this work, we consider the charged impurity and the
surface roughness potentials which are established
experimentally24,25 to be important. It has been demonstrated
that a short-range scattering potential is irrelevant for elec-
tronic properties of graphene.10,26 We have used the same
method16,27 to investigate some properties of the conven-
tional 2DEG. In this paper, we point out the differences be-
tween graphene and the conventional 2DEG due to disorder
effects. The scattering rate behavior within our self-
consistent theory shows that impurity scattering cannot local-
ize the carriers in graphene. The effect of disorder on spin
susceptibility is similar to that on compressibility, and ac-
cordingly we will not show any results for spin susceptibility.

The rest of this paper is organized as follows. In Sec. II,
we introduce the models for self-consistent calculation of the
impurity effect. We then outline the calculation of compress-
ibility. Section III contains our numerical calculations of
ground state properties and comparison of models with re-
cent experimental measurements. We conclude in Sec. IV
with a brief summary.

II. THEORETICAL MODEL

We consider a system of 2D Dirac-like electrons interact-
ing via the Coulomb potential e2 /�r and its Fourier trans-
form vq=2�e2 / ��q�, where � is the background dielectric
constant. The Dirac electron gas Hamiltonian on a graphene
sheet is given by

Ĥ = v�
k,�

�̂k,�
† ��3

� � · k��̂k,� +
1

2A
�
q�0

vq�n̂qn̂−q − N̂� ,

�1�

where v=3ta /2 is the Fermi velocity, t is the tight-binding
hopping integral, a is the spacing of the honeycomb lattice, A

is the sample area, and N̂ is the total number operator. Here
�3 is a Pauli matrix that acts on K and K�, the two degenerate
valleys at which the � and �� bands touch, and �1 and �2 are
Pauli matrices that act on graphene’s pseudospin degrees of
freedom.

A central quantity in the theoretical formulation of the
many-body effects in Dirac fermions is the dynamical polar-
izability tensor 	�0��q , i
 ,��0� where � is the chemical
potential. This is defined through the one-body noninteract-
ing Green’s functions.28 The density-density response func-
tion 	�0��q ,
 ,�� of the doped two-dimensional Dirac elec-
tron model was first consider by Shung29 as a step toward a
theory of collective excitations in graphite. The Dirac elec-
tron 	�0��q ,
 ,�� expression has been considered recently by
us4 and others.30 Implementing the Green’s function
G�0��k ,� ,�� in the calculation, a closed-form expression for
	�0��q , i
 ,��0� is found.4 To describe the properties of
Dirac electrons we define a dimensionless coupling constant
�gr=ge2 /��, where g=gvgs=4 is the valley and spin degen-
eracy.

The effect of disorder is to dampen the charge-density
fluctuations and results in modification of the dynamical po-
larizability tensor. Within the relaxation time approximation,
the modified 	�0��q , i
 ,� ,�� is given by31

	�0��q,i
,�,�� =
	�0��q,i
 + i�,��

1 − �

+��1 −

	�0��q,i
 + i�,��
	�0��q�

� , �2�

in which the strength of damping is represented by �. To
include the many-body effects, we consider the density-
density correlation function within the RPA,

	���q,i
,�,�� =
	�0��q,i
,�,��

1 − vq	�0��q,i
,�,��
. �3�

As the short-range disorder is shown10 to have negligible
effect on the transport properties of graphene, we consider
long-ranged charged impurity scattering and surface rough-
ness as the main sources of disorder. The latter mechanism,
also known as ripples, comes from either thermal fluctua-
tions or interaction with the substrate.32 The disorder-
averaged surface roughness �ripple� potential �SRP� is mod-
eled as

��Usurf�q��2� = ��2h2�2�e2n/��2e−q2�2/4, �4�

where h and � are parameters describing fluctuations in the
height and width, respectively. We can use the experimental
results of Meyer al.,24 who estimate �	10 nm and
h	0.5 nm. It is important to point out that there are other
models to take into account the surface roughness potential.
The effect of bending of the graphene sheet has been studied
by Kim and Castro Neto.33 This model has two main effects;
first a decrease of the distance between carbon atoms, and
second a rotation of the pz orbitals. Because of bending, the
electrons are subject to a potential which depends on the
structure of the graphene sheet. Another possible model is
described by Katsnelson and Geim,26 considering the change
of in-plane and out-of-plane displacements due to the local
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curvature of the graphene sheet. Consequently, the change of
the atomic displacements results in change in nearest-
neighbor hopping parameters, which is equivalent to the ap-
pearance of a random gauge field described by a vector po-
tential. These different models need to be implemented in
our scheme and to be checked numerically to assess their
validity in comparison to the available measurements.

The charged disorder potential �CDP� is taken to be

��Uimp�q��2� = nivq
2e−2qd, �5�

in which ni is the density of impurities and d is the setback
distance from the graphene sheet.

We use the mode-coupling approximation introduced by
Götze22 to express the total scattering rate in terms of the
screened disorder potentials,

i� = −
vFkF

2nA
�
q
� ��Uimp�q�2��

�2�q�
+

��Usurf�q��2�
�2�q�

�
�

�0�q,i��
1 + i��0�q,i��/	0�q�

, �6�

where ��q�=1−vq	�0��q� is the static screening function, and
the relaxation function for electrons scattering from disorder
is given as �0�q , i��= 
	�0��q , i� ,��−	�0��q�� / i�.

Since the scattering rate � depends on the relaxation func-
tion �0�q , i��, which itself is determined by the response
function with disorder included, the above equation needs to
be solved self-consistently to yield eventually the scattering
rate as a function of the coupling constant. Note that at the
present level of approximation �i.e., the RPA� the static di-
electric function ��q� does not depend on �. In the conven-
tional 2DEG, correlation effects beyond the RPA �through
the local-field factor� render ��q� also � dependent.16

The ground-state energy is calculated using the coupling
constant integration technique, which has the contributions
Etot=Ekin+Ex+Ec. The first-order “exchange” contribution
per particle is given by

�x =
Ex

N
=

1

2
� d2q

�2��2vq�−
1

�n
�

0

+�

d
 	�0��q,i
,�,�� − 1� .

�7�

To evaluate the correlation energy in the RPA, we follow a
standard strategy for uniform continuum models,34

�c
RPA =

Ec

N
=

1

2�n
� d2q

�2��2�
0

+�

d
vq	�0��q,i
,�,��

+ ln
1 − vq	�0��q,i
,�,���� . �8�

Since 	�0��q ,
 ,� ,�� is linearly proportional to q at large q
and decreases only as �−1 at large �, the exchange and cor-
relation energy built by Eqs. �7� and �8� is divergent.4 In
order to improve convergence, it is convenient at this point
to add and subtract 	�0��q , i
 ,�=0,2�� inside the frequency
integral and regularize35 the exchange and correlation en-
ergy. Therefore, these ultraviolet divergences can be cured by
calculating

��x = −
1

2�n
� d2q

�2��2vq�
0

+�

d
 �	�0��q,i
,�,�� �9�

and

��c
RPA =

1

2�n
� d2q

�2��2�
0

+�

d
�vq�	�0��q,i
,�,��

+ ln� 1 − vq	�0��q,i
,�,��
1 − vq	�0��q,i
,� = 0,2���� , �10�

where �	�0� is the difference between the doped ���0� and
undoped ��=0� polarizability functions. With this regular-
ization the q integrals have logarithmic ultraviolet
divergences.4 We can introduce an ultraviolet cutoff for the
wave vector integrals kc=�kF which is of the order of the
inverse lattice spacing and � is a dimensionless quantity. The
Fermi momentum is related to the density as given by
kF= �4�n /g�1/2. Once the ground state is obtained, the com-
pressibility � can easily be calculated from

�−1 = n2�2�n��tot�
�n2 , �11�

where the total ground-state energy is given by ��tot
=��kin+��x+��c

RPA. Here the zeroth-order kinetic contribu-
tion to the ground-state energy is ��kin= 2

3�F. We consider the
dimensionless ratio � /�0 where �0=2 / �n�F� is the compress-
ibility of the noninteracting system.

III. NUMERICAL RESULTS

In this section we present our calculations for ground-
state properties of graphene in the presence of impurities that
we model as mentioned above. The inverse compressibility
1 / �n2�� is calculated by using the theoretical models de-
scribed above and the results are compared with the recent
experimental measurements. In all numerical calculations we
consider d=0.5 nm. The electron density is taken to be
1�1012 cm−2 for Figs. 1–3.

Increasing disorder �increasing ni or decreasing d for a
charge disorder potential or increasing h for a surface rough-
ness potential� decreases 	�0��q ,
 ,� ,�� as the scattering
rate � gets bigger. Thus, decreasing 	�0��q ,
 ,� ,�� �or in-
creasing correlation effects� results in a stronger disorder po-
tential. Although � increases with increasing �gr, apparently
it grows to a saturation limit and does not diverge. This be-
havior is quite different from what is seen in a conventional
2DEG,16 when the many-body effects influence the scatter-
ing rate through the local-field factor. In the conventional
2DEG system, at a critical level of disorder this nonlinear
feedback causes � to increase rapidly and diverge, which is
taken as an indication of the localization of carriers. How-
ever, in graphene, our calculations show that � does not di-
verge; therefore impurities cannot localize carriers and we
have a weakly localized system in the presence of impurities,
compatible with experimental observations.36 We can under-
stand the saturated behavior of � qualitatively as follows. In
the context of a conventional 2DEG, the Mott argument says
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that the mean free path l in a metal cannot be shorter than the
wavelength �. Since l is proportional to the inverse of �, for
large values of � obtained in a 2DEG, the electron mean free
path decreases and becomes less than or equal to �. At this
point we should have a metal-insulator phase transition. In
the context of graphene, on the other hand, Mott’s argument
suggests that the light is unaffected by any roughness �one
source of scattering� on a scale shorter than its wavelength.
Consequently there is a lower limit for the electron’s mean
free path in graphene, and it turns out that we have a maxi-
mum �saturation� value for �.

The issue of localization in graphene has recently at-
tracted some attention and the chiral nature of the electron
behavior has been discussed in the literature.37,38 Suzuura
and Ando37 claimed that the quantum correction to the con-
ductivity in graphene can differ from what is observed in a
normal 2DEG because the elastic scattering in graphene can
possibly change the sign of the localization correction and
turn weak localization into weak antilocalization for the re-
gion where the intervalley scattering time is much larger than
the phase coherence time. Further consideration of the be-
havior of the quantum correction to the conductivity in
graphene38 concluded that this behavior is entirely sup-
pressed due to time-reversal-symmetry breaking of electronic
states around each degenerate valley.

We have found through our calculations that � increases
with increasing ni /n as a function of �gr. Figure 1 shows �
for various scattering mechanisms. It is clear that the CDP is
the dominant mechanism for � in our model. The effect of
the SRP is mostly negligible, except at large values of the
coupling constant. This finding is to be contrasted with the
statement of Martin et al.18 that both substrate-induced struc-
tural distortions �SRP� and chemical doping �CDP� are con-
ceivable sources of density fluctuations. We stress that our
model calculations indicate that at realistic coupling constant
values �see Fig. 1� only the charged impurity scattering
dominates.

We have calculated the exchange and correlation energies
as a function of �gr in the presence of disorder. It is found
that the disorder effects become more appreciable at large
coupling constants, within the mode-coupling approxima-
tion. The exchange energy is positive4 because our regular-
ization procedure implicitly selects the chemical potential of
undoped graphene as the zero of energy; doping either occu-
pies quasiparticle states with positive energies or empties
quasiparticles with negative energies. Figure 2�a� shows the
correlation energy ��c as a function of �gr. It appears that the
disorder effects become more appreciable at large coupling
constant. Note that ��c has the same density dependence as
��x apart from the weak dependence on �. In contrast to the
exchange energy, Fig. 2�b�, the correlation energy is
negative.4 Figure 3 shows the charge compressibility � /�0
scaled by its noninteracting contribution as a function of �gr
for various models of �. The behavior of � shows some
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novel physics, which is qualitatively different from the phys-
ics known in the conventional 2DEG. Exchange makes a
positive contribution to the inverse compressibility and thus
tends to reduce �rather than enhance� the compressibility. On
the other hand, correlations make a negative contribution to
the inverse compressibility and thus tend to enhance �. In the
conventional 2DEG both contributions tend to enhance the
compressibility. In the case of graphene instead, apparently
exchange and correlation compete with each other18 in deter-
mining the compressibility of the system. It is interesting to
note that similar physics is true also in the spin
susceptibility.4

In Fig. 4 we compare our theoretical predictions for the
inverse compressibility of doped graphene with the experi-
mental results of Martin et al.18 For definiteness we take
�=kc /kF to be such that ���kF�2= �2��2 /A0, where
A0=3�3a0

2 /2 is the area of the unit cell in the honeycomb
lattice, with a0�1.42 Å the carbon-carbon distance. With
this choice ���gn−1�3 /9.09�1/2�102, where n is the elec-
tron density in units of 1012 cm−2. Martin et al.18 fitted the
experimental inverse compressibility �n2��−1 to the kinetic
term using a single-parameter Fermi velocity which is larger
than the bare Fermi velocity. Note that the kinetic term in
graphene has the same density dependence as the leading
exchange and correlation terms.

As is clear in Fig. 4 the inverse compressibility of a non-
interacting system is below the experimental data. By in-
creasing the interaction effects, i.e., increasing the coupling
constant strength �gr, our theoretical results move up. Unfor-
tunately, in the experimental sample, the value of �gr is not
specified and we considered it to be �1. Therefore, including
the exchange-correlation effects in our RPA theory gives re-
sults very close to the experimental data. Furthermore, the
results of incorporating the impurity density ni=1010 cm−2

in the system and solving the self-consistent equations to
obtain the scattering rate value yield very good agreement
with the measured values in the large- and mid-electron-

density regions. We have examined the inverse compressibil-
ity using the kinetic term contribution only, including a fit-
ting value for the Fermi velocity, and our numerical results
are well described by a fitting velocity about 1.28vF. We
would stress here that this fitting velocity is different from
the renormalized velocity defined within the Landau Fermi
liquid theory in graphene.5

In a recent calculation of �� /�n within the Hartree-Fock
approximation in grapheme, where � is the chemical poten-
tial and n is the electron density, Hwang et al.20 stated that
correlation and disorder effects would introduce only small
corrections. This is not true in general, since it has been
shown by Barlas et al.4 that the correlation effects are essen-
tial in the ground-state properties. Although these effects are
not significant in the regime of very weak interaction
strength and high electron density, the inclusion of many-
body exchange-correlation effects together with the disorder
effect are necessary to get agreement with quantities mea-
sured in the experiments of Martin et al.18 It would be useful
to carry out further experimental work at larger interaction
strengths to assess the role played by correlation effects.

IV. CONCLUSION

We have studied the ground-state thermodynamic proper-
ties of a graphene sheet within the random-phase approxima-
tion, incorporating the impurities in the system. Our ap-
proach is based on a self-consistent calculation including
impurity effects and many-body electron-electron interac-
tions. We have used a model surface roughness potential to-
gether with the charged disorder potential in the system. Our
calculations of inverse compressibility, when compared with
recent experimental results of Martin et al.,18 demonstrate
the importance of including correlation effects together with
disorder effects correctly in the thermodynamic quantities.
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We remark that, in the very low-density region, the sys-
tem is highly inhomogeneous; here the experimental data
tend to a constant and the effect of the impurities is very
important. A model going beyond the RPA is necessary to
account for increasing correlation effects at low density. To
describe the experimental data in this region, more sophisti-
cated theoretical methods incorporating inhomogeneities are
needed. One approach would be the density-functional

theory where Dirac electrons in the presence of impurities
are considered.
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