276 research outputs found

    Identification of direction in gene networks from expression and methylation

    Get PDF
    Background: Reverse-engineering gene regulatory networks from expression data is difficult, especially without temporal measurements or interventional experiments. In particular, the causal direction of an edge is generally not statistically identifiable, i.e., cannot be inferred as a statistical parameter, even from an unlimited amount of non-time series observational mRNA expression data. Some additional evidence is required and high-throughput methylation data can viewed as a natural multifactorial gene perturbation experiment. Results: We introduce IDEM (Identifying Direction from Expression and Methylation), a method for identifying the causal direction of edges by combining DNA methylation and mRNA transcription data. We describe the circumstances under which edge directions become identifiable and experiments with both real and synthetic data demonstrate that the accuracy of IDEM for inferring both edge placement and edge direction in gene regulatory networks is significantly improved relative to other methods. Conclusion: Reverse-engineering directed gene regulatory networks from static observational data becomes feasible by exploiting the context provided by high-throughput DNA methylation data. An implementation of the algorithm described is available at http://code.google.com/p/idem/

    An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power.</p> <p>Results</p> <p>We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated.</p> <p>Conclusions</p> <p>Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package <it>betr </it>is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from <url>http://www.tm4.org/mev.html</url>.</p

    Detection, quantification and genotyping of Herpes Simplex Virus in cervicovaginal secretions by real-time PCR: a cross sectional survey

    Get PDF
    BACKGROUND: Herpes Simplex Virus (HSV) Genital Ulcer Disease (GUD) is an important public health problem, whose interaction with HIV results in mutually enhancing epidemics. Conventional methods for detecting HSV tend to be slow and insensitive. We designed a rapid PCR-based assay to quantify and type HSV in cervicovaginal lavage (CVL) fluid of subjects attending a Genito-Urinary Medicine (GUM) clinic. Vaginal swabs, CVL fluid and venous blood were collected. Quantitative detection of HSV was conducted using real time PCR with HSV specific primers and SYBR Green I. Fluorogenic TaqMan Minor Groove Binder (MGB) probes designed around a single base mismatch in the HSV DNA polymerase I gene were used to type HSV in a separate reaction. The Kalon test was used to detect anti-HSV-2 IgG antibodies in serum. Testing for HIV, other Sexually Transmitted Infections (STI) and related infections was based on standard clinical and laboratory methods. RESULTS: Seventy consecutive GUM clinic attendees were studied. Twenty-seven subjects (39%) had detectable HSV DNA in CVL fluid; HSV-2 alone was detected in 19 (70%) subjects, HSV-1 alone was detected in 4 (15%) subjects and both HSV types were detected in 4 (15%) subjects. Eleven out of 27 subjects (41%) with anti-HSV-2 IgG had detectable HSV-2 DNA in CVL fluid. Seven subjects (10%) were HIV-positive. Three of seven (43%) HIV-infected subjects and two of five subjects with GUD (40%) were secreting HSV-2. None of the subjects in whom HSV-1 was detected had GUD. CONCLUSION: Quantitative real-time PCR and Taqman MGB probes specific for HSV-1 or -2 were used to develop an assay for quantification and typing of HSV. The majority of subjects in which HSV was detected had low levels of CVL fluid HSV, with no detectable HSV-2 antibodies and were asymptomatic

    Factors Affecting EWS-FLI1 Activity in Ewing's Sarcoma

    Get PDF
    Ewing's sarcoma family tumors (ESFT) are characterized by specific chromosomal translocations, which give rise to EWS-ETS chimeric proteins. These aberrant transcription factors are the main pathogenic drivers of ESFT. Elucidation of the factors influencing EWS-ETS expression and/or activity will guide the development of novel therapeutic agents against this fatal disease

    Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing

    Get PDF
    Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI Nucleases (RFNs) that recognize extended sequences and can edit endogenous genes with high efficiencies in human cells. The cleavage activity of an RFN depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation and therefore show improved specificities relative to wild-type Cas9 monomers. Importantly, direct comparisons show that RFNs guided by a single gRNA generally induce lower levels of unwanted mutations than matched monomeric Cas9 nickases. In addition, we describe a simple method for expressing multiple gRNAs bearing any 5â€Č end nucleotide, which gives dimeric RFNs a broad targeting range. RFNs combine the ease of RNA-based targeting with the specificity enhancement inherent to dimerization and are likely to be useful in applications that require highly precise genome editing

    Altering, Improving, And Defining The Specificities Of Crispr-Cas Nucleases

    Get PDF
    CRISPR-Cas9 nucleases have been widely adopted for genome editing applications to knockout genes or to introduce desired changes. While these nucleases have shown immense promise, two notable limitations of the wild-type form of the broadly used Streptococcus pyogenes Cas9 (SpCas9) are the restriction of targeting range to sites that contain an NGG protospacer adjacent motif (PAM), and the undesirable ability of the enzyme to cleave off-target sites that resemble the on-target site. Scarcity of PAM motifs can limit implementations that require precise targeting, whereas off-target effects can confound research applications and are important considerations for therapeutics. To improve the targeting range of SpCas9 and an orthogonal Cas9 from Staphylococcus aureus (called SaCas9), we optimized a heterologous genetic selection system that enabled us to perform directed evolution of PAM specificity. With SpCas9, we evolved two separate variants that can target NGA and NGCG PAMs1, and with SaCas9 relaxed the PAM from NNGRRT to NNNRRT2, increasing the targetability of these enzyme 2- to 4-fold. The genome-wide specificity profiles of SpCas9 and SaCas9 variants, determine by GUIDE-seq3, indicate that they are at least as, if not more, specific than the wild-type enzyme1,2. Together, these results demonstrate that the inherent PAM specificity of multiple different Cas9 orthologues can be purposefully modified to improve the accuracy of targeting. Existing strategies for improving the genome-wide specificity of SpCas9 have thus far proven to be incompletely effective and/or have other limitations that constrain their use. To address the off-target potential of SpCas9, we engineered a high-fidelity variant of SpCas9 (called SpCas9-HF1), that contains alterations designed to reduce non-specific contacts to the target strand DNA backbone. In comparison to wild-type SpCas9, SpCas9-HF1 rendered all or nearly all off-target events imperceptible by GUIDE-seq and targeted deep-sequencing methods with standard non-repetitive target sites in human cells4. Even for atypical, repetitive target sites, the vast majority of off-targets induced by SpCas9-HF1 and optimized derivatives were not detected4. With its exceptional precision, SpCas9-HF1 provides an important and easily employed alternative to wild-type SpCas9 that can eliminate off-target effects when using CRISPR-Cas9 for research and therapeutic applications. Finally, on-target activity and genome-wide specificity are two important properties of engineered nucleases that should be characterized prior to adoption of such technologies for research or therapeutic applications. CRISPR-Cas Cpf1 nucleases have recently been described as an alternative genome-editing platform5, yet their activities and genome-wide specificities remain largely undefined. Based on assessment of on-target activity across more than 40 target sites, we demonstrate that two Cpf1 orthologues function robustly in human cells with efficiencies comparable to those of the widely used Streptococcus pyogenes Cas9. We also demonstrate that four to six bases at the 3’ end of the short CRISPR RNA (crRNA) used to program Cpf1 are insensitive to single base mismatches, but that many of the other bases within the crRNA targeting region are highly sensitive to single or double substitutions6. Consistent with these results, GUIDE-seq performed in multiple cell types and targeted deep sequencing analyses of two Cpf1 nucleases revealed no detectable off-target cleavage for over half of 20 different crRNAs we examined. Our results suggest that the two Cpf1 nucleases we characterized generally possess robust on-target activity and high specificities in human cells, findings that should encourage broader use of these genome editing enzymes. 1. Kleinstiver, BP, et al. (2015) Nature, 523(7561):481-5 2. Kleinstiver, BP, et al. (2015) Nature Biotechnology, 33(12):1293-98 3. Tsai, SQ et al. (2015) Nature Biotechnology, 33(2):187-97 4. Kleinstiver, BP and Pattanayak, V, et al. (2016), Nature, 529(7587):490-5 5. Zetsche, B, et al. (2015) Cell, 163(3):759-71 6. Kleinstiver, BP and Tsai, SQ, et al. (2016), Nature Biotechnology, 34(8):869-7
    • 

    corecore