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Abstract

Summary: The 3D architecture of DNA within the nucleus is a key determinant of interactions be-

tween genes, regulatory elements, and transcriptional machinery. As a result, differences in DNA

looping structure are associated with variation in gene expression and cell state. To systematically

assess changes in DNA looping architecture between samples, we introduce diffloop, an R/

Bioconductor package that provides a suite of functions for the quality control, statistical testing,

annotation, and visualization of DNA loops. We demonstrate this functionality by detecting differ-

ences between ENCODE ChIA-PET samples and relate looping to variability in epigenetic state.

Availability and implementation: Diffloop is implemented as an R/Bioconductor package available

at https://bioconductor.org/packages/release/bioc/html/diffloop.html

Contact: aryee.martin@mgh.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The organization of DNA within the nucleus into hierarchical 3D

structures plays a key role in regulating gene expression by deter-

mining the accessibility of genes to the transcriptional machinery as

well as the proximity of genes to their distal regulatory elements.

Differences in 3D architecture, such as the presence or absence of

loops between enhancers and their target genes, are associated with

transcriptional variation in both normal and disease states.

Intriguingly, several recent studies have implicated alterations in

genome topology with a diverse set of diseases (Flavahan et al.,

2016; Hnisz et al., 2016).

Experimental techniques that couple chromatin conformation

capture (3C; Dekker et al., 2002) with high-throughput sequencing

have made the genome-wide identification of 3D interactions feas-

ible. For example, the high-throughput chromosome conformation

capture (Hi-C) assay, which can theoretically yield a near-complete

map of chromatin interactions, has been used to map the 3D genome

at a 1-kb resolution (Rao et al., 2014). As Hi-C requires billions

of reads to achieve this resolution, methods such as Chromatin

Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET)

(Tang et al., 2015), HiChIP (Mumbach et al., 2016), or promoter-

capture Hi-C (Mifsud et al., 2015) use capture techniques to enrich

for specific subsets of interactions such as structural loops or enhan-

cer–promoter interactions, allowing lower sequencing depths. These

assays when coupled with appropriate preprocessing tools (Cairns

et al., 2016; Phanstiel et al., 2015) produce interaction frequencies

between pairs of genomic loci.

In order to fully explore the role that 3D genome organization

plays in determining normal and pathogenic cell states, statistical

tools are needed to identify differences in DNA loops in a similar

manner to which differential expression analysis is applied to tran-

scriptional data. Additionally, the systematic integration of biolo-

gical prior knowledge, such as the location of active enhancer

regions, into topology analyses can provide annotation and insight

into the regulatory role of a loop. To address these needs, we have

developed diffloop, an R/Bioconductor package that implements
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statistical testing for differential DNA looping between samples

from ChIA-PET, HiChIP, and related 3C assays. While existing

tools such as DiffBind (Stark and Brown, 2015) and diffHiC (Lun

and Smyth, 2015) provide functionality for identifying differential

features from ChIP-seq and Hi-C experiments, diffloop provides a

suite of functions tailored to chromatin loop data. Here, we briefly

demonstrate some of the utility of the diffloop package by comparing

chromatin interactions inferred by ChIA-PET replicates between the

MCF7 and K562 cell lines (ENCODE Project Consortium, 2012).

2 Materials and methods

Following import of raw loop read counts diffloop combines counts

across samples and assigns statistical significance to each putative

loop using the method developed by Phanstiel et al. (2015). The cal-

culation uses a model that takes into account the signal intensity at

each of the anchors and the expected background chromatin inter-

action frequency for the given anchor separation distance.

To identify differential loops, diffloop by default applies the stat-

istical test in edgeR (Robinson et al., 2010) where counts are mod-

eled using the negative binomial distribution and an empirical Bayes

procedure is used to moderate the degree of overdispersion. The

counts matrix, rather than representing reads mapped to genes or

transcripts as is typical in a differential expression analysis, instead

contains PETs (i.e. paired-end reads). A scaling size factor is calcu-

lated for each sample to account for variations in read depth.

The diffloop provides functionality for annotation of loops and

loop anchors and to facilitate interpretation of the functional rele-

vance of the significantly differential loops identified. A typical use

case involves annotating anchors with chromatin mark data and,

promoter overlap and gene expression levels. Loops may be catego-

rized based on these annotations into categories such as CTCF-

CTCF or enhancer-promoter and can be visualized with ease using

novel diffloop functions.

3 Results

POL2 ChIA-PET data from two MCF7 and two K562 samples were

individually preprocessed from raw reads to loops using the Mango

preprocessing pipeline (Phanstiel et al., 2015). Across the union of

the four samples considered for our analyses, we observed a total of

87 456 anchor pairs involving 24 576 autosomal loci (anchors).

After filtering out loci biased by copy number variation, loops only

detected in a single sample, and anchor pairs with interaction

frequencies within the range of the background signal (Phanstiel

et al., 2015), we retained 9320 loops for differential testing (see

Supplementary Material).

At an FDR of 1%, we identified 2633 differential loops between

the cell lines, including 1974 loops that were annotated as enhancer-

promoter loops. Supplementary Table S3 summarizes the top five

differential enhancer–promoter loops specific to each cell line.

Figure 1 provides a sample visualization of one of these differential

loop regions where mutliple loops near the MTHFR gene were more

prevalent in the K562 cell line than the MCF7 cell line.

To characterize the structural differences globally, we identified

nine pathways enriched for genes involved in differential enhancer–

promoter looping (see Supplementary Material). Genes related to es-

trogen response such as GREB1 and XBP1, for example, are linked

by several strong loops to unique enhancers in the MCF-7 breast

cancer cell line. Conversely, targets associated with c-MYC tran-

scription factor, which plays a well-documented role in leukemia

and hematopoiesis were enriched in K562. These results suggest that

differential topology analyses can systematically uncover known

and novel regulatory loops related to disease and other phenotypes

of interest. Thus, we suggest that cell type-specific chromatin loops

such as those identified here by diffloop can serve as a valuable epi-

genetic feature for characterizing cell identity.
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