121 research outputs found

    Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    Get PDF
    BACKGROUND: Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. METHODS: Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. RESULTS: Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was highly susceptible to all the other essential oils at the diagnostic dose. CONCLUSIONS: C. citratus, E. tereticornis, E. citriodora, C. ambrosioides and C. schoenanthus are potential promising plant sources for alternative compounds to pyrethroids, for the control of the Anopheles malaria vector in Benin. The efficacy of their essential oils is possibly based on their chemical compositions in which major and/or minor compounds have reported insecticidal activities on various pests and disease vectors such as Anopheles

    Olyset Duo® (a pyriproxyfen and permethrin mixture net): an experimental hut trial against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus in Southern Benin.

    Get PDF
    BACKGROUND: Alternative compounds which can complement pyrethroids on long-lasting insecticidal nets (LN) in the control of pyrethroid resistant malaria vectors are urgently needed. Pyriproxyfen (PPF), an insect growth regulator, reduces the fecundity and fertility of adult female mosquitoes. LNs containing a mixture of pyriproxyfen and pyrethroid could provide personal protection through the pyrethroid component and reduce vector abundance in the next generation through the sterilizing effect of pyriproxyfen. METHOD: The efficacy of Olyset Duo, a newly developed mixture LN containing pyriproxyfen and permethrin, was evaluated in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. Comparison was made with Olyset Net® (permethrin alone) and a LN with pyriproxyfen alone (PPF LN). Laboratory tunnel tests were performed to substantiate the findings in the experimental huts. RESULTS: Overall mortality of wild pyrethroid resistant An. gambiae s.s. was significantly higher with Olyset Duo than with Olyset Net (50% vs. 27%, P = 0.01). Olyset DUO was more protective than Olyset Net (71% vs. 3%, P<0.001). The oviposition rate of surviving blood-fed An. gambiae from the control hut was 37% whereas none of those from Olyset Duo and PPF LN huts laid eggs. The tunnel test results were consistent with the experimental hut results. Olyset Duo was more protective than Olyset Net in the huts against wild pyrethroid resistant Cx. quinquefasciatus although mortality rates of this species did not differ significantly between Olyset Net and Olyset Duo. There was no sterilizing effect on surviving blood-fed Cx. quinquefasciatus with the PPF-treated nets. CONCLUSION: Olyset Duo was superior to Olyset Net in terms of personal protection and killing of pyrethroid resistant An. gambiae, and sterilized surviving blood-fed mosquitoes. Mixing pyrethroid and pyriproxyfen on a LN shows potential for malaria control and management of pyrethroid resistant vectors by preventing further selection of pyrethroid resistant phenotypes

    Rapid Urban Malaria Appraisal (RUMA) IV: Epidemiology of urban malaria in Cotonou (Benin)

    Get PDF
    BACKGROUND: An estimated 40 % of the population in Benin lives in urban areas. The purpose of the study was to estimate malaria endemicity and the fraction of malaria-attributable fevers in health facilities in Cotonou. METHODS: A health care system evaluation and a series of school parasitaemia surveys and health facility-based surveys were carried out during the dry season in of 2003, applying standard Rapid Urban Malaria Appraisal (RUMA) methodology. This study was part of a multi-site assessment supported by the Roll Back Malaria Partnership. RESULTS: The field work was carried out in February-March 2003. In 2002 and out of 289,342 consultations in the public health facilities of Cotonou there were 100,257 reported simple malaria cases (34.6%) and 12,195 complicated malaria cases (4.2%). In the school parasitaemia surveys, a malaria infection was found in 5.2 % of all samples. The prevalence rates of parasitaemia in the centre, intermediate and periphery zones were 2.6%, 9.0% and 2.5%, respectively. In the health facility surveys the malaria infection rates in presenting fever cases were 0% (under one year old), 6.8% (one to five years old), 0% (> five to 15 years old) and 0.9% (over 15 years old), while these rates in the control group were 1.4%, 2.8%, 1.3% and 2.0%. The malaria-attributable fractions among presenting fever cases were 0.04 in the one to five years old and zero in the three other age groups. Hence, malaria played only a small role in fever episodes at the end of the dry season. In total, 69.2% of patients used a mosquito net the night before the survey and 35.1% used an insecticide-treated net, which was shown to be protective for an infection (OR = 0.23, 95% CI 0.07–0.78). Travelling to a rural area (5.8% of all respondents) did not increase the infection risk. CONCLUSION: The homogenously low malaria prevalence might be associated with urban transformation and/or a high bednet usage. Over-diagnosis of malaria and over-treatment with antimalarials was found to be a serious problem

    Which intervention is better for malaria vector control: insecticide mixture long-lasting insecticidal nets or standard pyrethroid nets combined with indoor residual spraying?

    Get PDF
    BACKGROUND: Malaria control today is threatened by widespread insecticide resistance in vector populations. The World Health Organization (WHO) recommends the use of a mixture of unrelated insecticides for indoor residual spraying (IRS) and long-lasting insecticidal nets (LNs) or as a combination of interventions for improved vector control and insecticide resistance management. Studies investigating the efficacy of these different strategies are necessary. METHODS: The efficacy of Interceptor® G2 LN, a newly developed LN treated with a mixture of chlorfenapyr (a pyrrole) and alpha-cypermethrin (a pyrethroid), was compared to a combined chlorfenapyr IRS and Interceptor® LN (a standard alpha-cypermethrin LN) intervention in experimental huts in Cove Southern Benin, against wild, free-flying, pyrethroid-resistant Anopheles gambiae s.l. A direct comparison was also made with a pyrethroid-only net (Interceptor® LN) alone and chorfenapyr IRS alone. RESULTS: WHO resistance bioassays performed during the trial demonstrated a pyrethroid resistance frequency of >90% in the wild An. gambiae s.l. from the Cove hut site. Mortality in the control (untreated net) hut was 5%. Mortality with Interceptor® LN (24%) was lower than with chlorfenapyr IRS alone (59%, P < 0.001). The combined Interceptor® LN and chlorfenapyr IRS intervention and the mixture net (Interceptor® G2 LN) provided significantly higher mortality rates (73 and 76%, respectively) and these did not differ significantly between both treatments (P = 0.15). Interceptor LN induced 46% blood-feeding inhibition compared to the control untreated net, while chlorfenapyr IRS alone provided none. Both mixture/combination strategies also induced substantial levels of blood-feeding inhibition (38% with combined interventions and 30% with Interceptor® G2 LN). A similar trend of improved mortality of pyrethroid-resistant An. gambiae s.l. from Cove was observed with Interceptor® G2 LN (79%) compared to Interceptor LN (42%, P < 0.001) in WHO tunnel tests. CONCLUSION: The use of chlorfenapyr and alpha-cypermethrin together as a mixture on nets (Interceptor® G2 LN) or a combined chlorfenapyr IRS and pyrethroid LN intervention provides improved control of pyrethroid-resistant malaria vectors by inducing significantly higher levels of mortality through the chlorfenapyr component and providing personal protection through the pyrethroid component. Both strategies are comparable in their potential to improve the control of malaria transmitted by pyrethroid resistant mosquito vectors

    Insecticide resistance profile of Anopheles gambiae from a phase II field station in Cové, southern Benin: implications for the evaluation of novel vector control products.

    Get PDF
    BACKGROUND: Novel indoor residual spraying (IRS) and long-lasting insecticidal net (LLIN) products aimed at improving the control of pyrethroid-resistant malaria vectors have to be evaluated in Phase II semi-field experimental studies against highly pyrethroid-resistant mosquitoes. To better understand their performance it is necessary to fully characterize the species composition, resistance status and resistance mechanisms of the vector populations in the experimental hut sites. METHODS: Bioassays were performed to assess phenotypic insecticide resistance in the malaria vector population at a newly constructed experimental hut site in Cové, a rice growing area in southern Benin, being used for WHOPES Phase II evaluation of newly developed LLIN and IRS products. The efficacy of standard WHOPES-approved pyrethroid LLIN and IRS products was also assessed in the experimental huts. Diagnostic genotyping techniques and microarray studies were performed to investigate the genetic basis of pyrethroid resistance in the Cové Anopheles gambiae population. RESULTS: The vector population at the Cové experimental hut site consisted of a mixture of Anopheles coluzzii and An. gambiae s.s. with the latter occurring at lower frequencies (23 %) and only in samples collected in the dry season. There was a high prevalence of resistance to pyrethroids and DDT (>90 % bioassay survival) with pyrethroid resistance intensity reaching 200-fold compared to the laboratory susceptible An. gambiae Kisumu strain. Standard WHOPES-approved pyrethroid IRS and LLIN products were ineffective in the experimental huts against this vector population (8-29 % mortality). The L1014F allele frequency was 89 %. CYP6P3, a cytochrome P450 validated as an efficient metabolizer of pyrethroids, was over-expressed. CONCLUSION: Characterizing pyrethroid resistance at Phase II field sites is crucial to the accurate interpretation of the performance of novel vector control products. The strong levels of pyrethroid resistance at the Cové experimental hut station make it a suitable site for Phase II experimental hut evaluations of novel vector control products, which aim for improved efficacy against pyrethroid-resistant malaria vectors to WHOPES standards. The resistance genes identified can be used as markers for further studies investigating the resistance management potential of novel mixture LLIN and IRS products tested at the site

    Identification and Larvicidal Efficacy of Mosquito-Repelling Plants Used in Malaria Vector Control in South-East Benin

    Get PDF
    After identifying issues posed by some synthetic insecticides, the scientific community is now looking for other natural products with insecticidal and/or insect repellent characteristics. This study aimed to identify the plants of the Beninese flora known for their insecticidal and/or insect repellent effects and the indigenous techniques of their use and to evaluate the combined efficacy of extracts of a few on mosquito larvae for the control of malaria vectors in the South-East of Benin. A survey was conducted and the insecticidal effects of three combinations made from Azadirachta indica, Cymbopogon nardus and Hyptis suaveolens oils on Anopheles gambiae larvae were studied. The data were analyzed using R software, and Chi-square test was used to compare death rates. Twelve (12) plant species were identified. The combinations of C. nardus and H. suaveolens oils induced the highest mortality rates (90 ± 4.15% and 68 ± 9.14% with stages 2 and 3 larvae, respectively). The application of extracts from these plants to control the malaria vectors population would reduce the use of chemical pesticides, hence the need to promote and enhance the formulations of biopesticides based on plant extracts. Keywords:&nbsp;&nbsp;&nbsp; Plant species, biopesticides, mosquito-repelling plants, vectors. &nbsp
    • …
    corecore