6,271 research outputs found

    Ionized Gas Motions and the Structure of Feedback Near a Forming Globular Cluster in NGC 5253

    Full text link
    We observed Brackett α\alpha 4.05μ\mum emission towards the supernebula in NGC 5253 with NIRSPEC on Keck II in adaptive optics mode, NIRSPAO, to probe feedback from its exciting embedded super star cluster (SSC). NIRSPEC's Slit-Viewing Camera was simultaneously used to image the K-band continuum at ∼\sim0.1′′0.1'' resolution. We register the IR continuum with HST imaging, and find that the visible clusters are offset from the K-band peak, which coincides with the Br α\alpha peak of the supernebula and its associated molecular cloud. The spectra of the supernebula exhibit Br α\alpha emission with a strong, narrow core. The linewidths are 65-76 km s−1^{-1}, FWHM, comparable to those around individual ultra-compact HII regions within our Galaxy. A weak, broad (FWHM≃\simeq150-175 km s−1^{-1}) component is detected on the base of the line, which could trace a population of sources with high-velocity winds. The core velocity of Br α\alpha emission shifts by +13 km s−1^{-1} from NE to SW across the supernebula, possibly indicating a bipolar outflow from an embedded object, or linked to a foreground redshifted gas filament. The results can be explained if the supernebula comprises thousands of ionized wind regions around individual massive stars, stalled in their expansion due to critical radiative cooling and unable to merge to drive a coherent cluster wind. Based on the absence of an outflow with large mass loss, we conclude that feedback is currently ineffective at dispersing gas, and the SSC retains enriched material out of which it may continue to form stars.Comment: 24 pages, 9 figure

    Ethics and professionalism for an IT professional in the UAE

    Get PDF
    In my last column, I provided my personal reflections on educating women in Dubai. In this column, I have asked two of the fourth-year students, Sara and Fatma, to provide their own views about the role that computer technology now plays in the UAE and the impact it is having on their culture. Their comments appear below

    Generalized Wick's theorem for multiquasiparticle overlaps as a limit of Gaudin's theorem

    Full text link
    We are able to rederive in a very simple way the standard generalized Wick's theorem for overlaps of mean field wave functions by using the extension of the statistical Wick's theorem (Gaudin's theorem) in the appropriate limits.Comment: 28 page

    Heart Rate Variability : Effect of Exercise Intensity on Postexercise Response

    Get PDF
    The purpose of the present study was to investigate the influence of two exercise intensities (moderate and severe) on heart rate variability (HRV) response in 16 runners 1 hr prior to (-1 hr) and at +1 hr, +24 hr, +48 hr, and +72 hr following each exercise session. Time domain indexes and a high frequency component showed a significant decrease (p < .001) between -1 hr and +1 hr for severe intensity. The low frequency component in normalized units significantly increased (p <.01) for severe intensity at +1 hr. Only severe exercise elicited a change in HRV outcomes postexercise, resulting in a reduction in the parasympathetic influence on the heart at +1 hr; however, values returned to baseline levels by +24 hr

    Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives

    Get PDF
    The optimal mechanical properties render magnesium widely used in industrial and biomedical applications. However, magnesium is highly reactive and unstable in aqueous solutions, which can be modulated to increase stability of reactive metals that include the use of alloys or by altering the surface with coatings. Plasma electrolytic oxidation is an efficient and tuneable method to apply a surface coating. By varying the plasma electrolytic oxidation parameters voltage, current density, time and (additives in the) electrolytic solution, the morphology, composition and surface energy of surface coatings are set. In the present study, we evaluated the influence on surface coatings of two solute additives, i.e. hexamethylenetetramine and mannitol, to base solutes silicate and potassium hydroxide. Results from in vitro studies in NaCl demonstrated an improvement in the corrosion resistance. In addition, coatings were obtained by a two-step anodization procedure, firstly anodizing in an electrolyte solution containing sodium fluoride and secondly in an electrolyte solution with hexamethylenetetramine and mannitol, respectively. Results showed that the first layer acts as a protective layer which improves the corrosion resistance in comparison with the samples with a single anodizing step. In conclusion, these coatings are promising candidates to be used in biomedical applications in particular because the components are non-toxic for the body and the rate of degradation of the surface coating is lower than that of pure magnesium

    Entanglement dynamics in ultra-high molecular weight polyethylene as revealed by dielectric spectroscopy

    Get PDF
    With the help of Broadband Dielectric Spectroscopy, it has been possible to study the molecular dynamics of disentangled Ultra High Molecular Weight Polyethylene in a wide temperature and frequency range. Catalytic ashes of aluminum oxide act as dielectric probes, allowing the identification of five different processes: an αc-process due to movements in the crystalline phase, two γ-processes attributed to amorphous chain portions close to the crystalline lamellae, and two β-processes that we have attributed to the disentangled and entangled amorphous phases. The entanglement formation has been followed by isothermal runs and a model that predicts the energy spent to form entanglements as a function of time and temperature is thereby proposed. This model allowed us to calculate the associated activation energy of the entanglement process. Our work advances further the understanding of entanglement dynamics of ultra-high molecular weight polymers, and the proposed model could prove useful to describe other similar processes such as cross-linking

    Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from Rhodobacter sphaeroides

    Get PDF
    Light harvesting in photosynthetic organisms involves efficient transfer of energy from peripheral antenna complexes to core antenna complexes, and ultimately to the reaction center where charge separation drives downstream photosynthetic processes. Antenna complexes contain many strongly coupled chromophores, which complicates analysis of their electronic structure. Two-dimensional electronic spectroscopy (2DES) provides information on energetic coupling and ultrafast energy transfer dynamics, making the technique well suited for the study of photosynthetic antennae. Here, we present 2DES results on excited state properties and dynamics of a core antenna complex, light harvesting complex 1 (LH1), embedded in the photosynthetic membrane of Rhodobacter sphaeroides. The experiment reveals weakly allowed higher-lying excited states in LH1 at 770 nm, which transfer energy to the strongly allowed states at 875 nm with a lifetime of 40 fs. The presence of higher-lying excited states is in agreement with effective Hamiltonians constructed using parameters from crystal structures and atomic force microscopy (AFM) studies. The energy transfer dynamics between the higher- and lower-lying excited states agree with Redfield theory calculations
    • …
    corecore