5,305 research outputs found

    Glacial cycles promote greater dispersal, which can help explain larger clutch sizes, in north temperate birds

    Get PDF
    Earth’s glacial history and patterns in the life history traits of the planet’s avifauna suggest the following interpretations of how recent geological history has affected these key characteristics of the biota: 1) Increased colonizing ability has been an important advantage of increased dispersal, and life history strategies are better categorized by dispersive colonizing ability than by their intrinsic growth rates; 2) Birds of the North Temperate Zone show a greater tendency to disperse, and they disperse farther, than tropical or south temperate birds; 3) Habitat changes associated with glacial advance and retreat selected for high dispersal ability, particularly in the North; and 4) Selection for greater dispersal throughout the unstable Pleistocene has also resulted in other well-recognized life history contrasts, especially larger clutch sizes in birds of North Temperate areas

    Season of the year influences infection rates following total hip arthroplasty

    Get PDF
    To research the influence of season of the year on periprosthetic joint infections. METHODS We conducted a retrospective review of the entire Medicare files from 2005 to 2014. Seasons were classified as spring, summer, fall or winter. Regional variations were accounted for by dividing patients into four geographic regions as per the United States Census Bureau (Northeast, Midwest, West and South). Acute postoperative infection and deep periprosthetic infections within 90 d after surgery were tracked. RESULTS In all regions, winter had the highest incidence of periprosthetic infections (mean 0.98%, SD 0.1%) and was significantly higher than other seasons in the Midwest, South and West (P \u3c 0.05 for all) but not the Northeast (P = 0.358). Acute postoperative infection rates were more frequent in the summer and were significantly affected by season of the year in the West. CONCLUSION Season of the year is a risk factor for periprosthetic joint infection following total hip arthroplasty (THA). Understanding the influence of season on outcomes following THA is essential when risk-stratifying patients to optimize outcomes and reduce episode of care costs. © The Author(s) 2017

    Brood size, sibling competition, and the cost of begging in great tits (Parus major)

    Get PDF
    Evolutionary theory of parent-offspring conflict explains begging displays of nestling birds as selfish attempts to influence parental food allocation. Models predict that this conflict may be resolved by honest signaling of offspring need to parents, or by competition among nestmates, leading to escalated begging scrambles. Although the former type of models has been qualitatively supported by experimental studies, the potential for a begging component driven by scramble competition cannot be excluded by the evidence. In a brood-size manipulation experiment with great tits, Parus major, we explored the scramble component in the begging activity of great tit nestlings by investigating the mechanisms of sibling competition in relation to brood size. While under full parental compensation, the feeding rate per nestling will remain constant over all brood sizes for both types of models; the scramble begging models alone predict an increase in begging intensity with brood size, if begging costs do not arise exclusively through predation. Great tit parents adjusted feeding rates to brood size and fed nestlings at similar rates and with similar prey sizes in all three brood-size categories. Despite full parental compensation, the begging and food solicitation activities increased with experimental brood size, whereas nestling body condition deteriorated. These findings support a scramble component in begging and suggest that the competition-induced costs of food solicitation behavior play an important role in the evolution of parent-offspring communicatio

    Critical Radius of Insulation

    Get PDF
    The critical radius of insulation is a counterintuitive concept within the study of heat transfer. The theory states that adding insulation to a cylindrical or spherical object will increase the rate of heat loss rather than decrease it, if the radius (thickness) of the insulation is at its “critical” value. The Critical Radius of Insulation Senior Project is designed to demonstrate this phenomenon to Heat Transfer students via a portable apparatus. The concept will be demonstrated with a cylindrical object which is heated by way of a separate voltage source. Thermocouples will display the temperature of the cylinder while insulation is added along with ambient air temperature, showing a distinct decrease in temperature caused by the addition of insulation. The design team conducted preliminary experiments using 1Ω, 2Ω, and 10Ω power resistors in an attempt to demonstrate the critical radius theory and evaluate the viability of using power resistors as the heated cylinder. The experiments were unsuccessful in demonstrating the critical radius theory but showed that the prototype setup was a viable design that could demonstrate this theory if the insulation material, insulation thickness, and power resistor diameter were properly modified. Based on the preliminary testing and analysis, a conceptual prototype model was developed. After further testing, the team determined that power resistors would take too long to reach steady state temperatures for a short classroom demonstration and that the diameters of the resistors were too large to demonstrate this theory with the appropriate experimental margin. Other studies were conducted using different heated cylinders starting with CalrodÂź heating elements. Testing was conducted with these heaters and 3D printed PLA insulation with great success. The heat loss for this setup was greater with the insulation than without, so the team used this heater and insulation combination to create a functioning structural prototype. Once the structural prototype was constructed and thoroughly tested, the team was able to successfully create a portable demonstration apparatus that physically shows the critical radius of insulation theory at work. This document details the iterative design process used to achieve the final design, the final design description, the manufacturing process used to build the final design, the verification and testing process, and conclusions about the overall project and the teams experience. The team’s overall objectives for this project are to first understand the concept of the critical radius of insulation and the experimental variables and assumptions that are important to proving it. The next step is to design and build an apparatus that can be used as a classroom demonstration and test this apparatus to ensure it is safe, easy to use, and clearly demonstrates critical radius theory. A supplemental handout also needs to be created to simply describe the theory to Heat Transfer students that will be witnessing this demonstration

    Studies of a Lacustrine-Volcanic Mars Analog Field Site with Mars-2020-like Instruments

    Get PDF
    On the upcoming Mars‐2020 rover two remote sensing instruments, Mastcam‐Z and SuperCam, and two microscopic proximity science instruments, SHERLOC and PIXL, will collect compositional (mineralogy, chemistry, and organics) data essential for paleoenvironmental reconstruction. The synergies between and limitations of these instruments were evaluated via study of a Mars analog field site in the Mojave Desert, using instruments approximating the data that will be returned by Mars‐2020. A ground truth dataset was generated for comparison to validate the results. The site consists of a succession of clay‐rich mudstones of lacustrine origin, interbedded tuffs, a carbonate‐silica travertine deposit, and gypsiferous mudstone strata. The major geological units were mapped successfully using simulated Mars‐2020 data. Simulated Mastcam‐Z data identified unit boundaries and Fe‐bearing weathering products. Simulated SuperCam passive shortwave infrared and green Raman data were essential in identifying major mineralogical composition and changes in lacustrine facies at distance; this was possible even with spectrally downsampled passive IR data. LIBS and simulated PIXL data discriminated and mapped major element chemistry. Simulated PIXL revealed mm‐scale zones enriched in zirconium, of interest for age dating. SHERLOC‐like data mapped sulfate and carbonate at sub‐mm scale; silicates were identified with increased laser pulses/spot or by averaging of hundreds of spectra. Fluorescence scans detected and mapped varied classes of organics in all samples, characterized further with follow‐on spatially targeted deep‐UV Raman spectra. Development of dedicated organics spectral libraries is needed to aid interpretation. Given these observations, the important units in the outcrop would be sampled and cached for sample return
    • 

    corecore