6,604 research outputs found

    Routine characterization and interpretation of complex alkali feldspar intergrowths

    Get PDF
    Almost all alkali feldspar crystals contain a rich inventory of exsolution, twin, and domain microtextures that form subsequent to crystal growth and provide a record of the thermal history of the crystal and often of its involvement in replacement reactions, sometimes multiple. Microtextures strongly influence the subsequent behavior of feldspars at low temperatures during diagenesis and weathering. They are central to the retention or exchange of trace elements and of radiogenic and stable isotopes. This review is aimed at petrologists and geochemists who wish to use alkali feldspar microtextures to solve geological problems or who need to understand how microtextures influence a particular process. We suggest a systematic approach that employs methods available in most well founded laboratories. The crystallographic relationships of complex feldspar intergrowths were established by the 1970s, mainly using single-crystal X-ray diffraction, but such methods give limited information on the spatial relationships of the different elements of the microtexture, or of the mode and chronology of their formation, which require the use of microscopy. We suggest a combination of techniques with a range of spatial resolution and strongly recommend the use of orientated sections. Sections cut parallel to the perfect (001) and (010) cleavages are the easiest to locate and most informative. Techniques described are light microscopy; scanning electron microscopy using both backscattered and secondary electrons, including the use of surfaces etched in the laboratory; electron-probe microanalysis and analysis by energy-dispersive spectrometry in a scanning electron microscope; transmission electron microscopy. We discuss the use of cathodoluminescence as an auxiliary technique, but do not recommend electron-backscattered diffraction for feldspar work. We review recent publications that provide examples of the need for great care and attention to pre-existing work in microtextural studies, and suggest several topics for future work

    Hyponatremia in the 2009 161-km Western States Endurance Run

    Full text link
    Purpose:To determine the incidence of exercise-associated hyponatremia (EAH), the associated biochemical measurements and risk factors for EAH, and whether there is an association between postrace blood sodium concentration ([Na+]) and changes in body mass among participants in the 2009 Western States Endurance Run, a 161-km mountain trail run. Methods: Change in body mass, postrace [Na+], and blood creatine phosphokinase (CPK) concentration, and selected runner characteristics were evaluated among consenting competitors. Results: Of the 47 study participants, 14 (30%) had EAH as defined by a postrace [Na+] /L. Postrace [Na+] and percent change in body mass were directly related (r = .30, P = .044), and 50% of those with EAH had body mass losses of 3–6%. EAH was unrelated to age, sex, finish time, or use of nonsteroidal anti-inflammatory drugs during the run, but those with EAH had completed a smaller (P = .03) number of 161-km ultramarathons. The relationship of CPK levels to postrace [Na+] did not reach statistical significance (r = –.25, P = .097). Conclusions: EAH was common (30%) among finishers of this 161-km ultramarathon and it was not unusual for those with EAH to be dehydrated. As such, changes in body mass should not be relied upon in the assessment for EAH during 161-km ultramarathons

    Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments

    Get PDF
    Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate-and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 μmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 μmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 μmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 μmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 μmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 μmol/g wet sediment and 16.16 ± 1.28 μmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 μmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P were not limiting Ks and qmax for crude oil were 4.52 ± 1.51 mg oil/g wet sediment and 16.89 ± 1.25 μmol CO2/g wet sediment/day. At concentrations of inorganic N above 45 μmol/g wet sediment inhibition of CO2 production from hydrocarbon degradation was evident. Analysis of bacterial 16S rRNA genes indicated that Alcanivorax spp. were selected in these marine sediments with increasing inorganic nutrient concentration, whereas Cycloclasticus spp. were more prevalent at lower inorganic nutrient concentrations. These data suggest that simple empirical estimates of the proportion of nutrients added relative to crude oil concentrations may not be sufficient to guarantee successful crude oil bioremediation in oxic beach sediments. The data we present also help define the maximum rates and hence timescales required for bioremediation of beach sediments

    Application of calibrations to hyperspectral images of food grains: example for wheat falling number

    Get PDF
    The presence of a few kernels with sprouting problems in a batch of wheat can result in enzymatic activity sufficient to compromise flour functionality and bread quality. This is commonly assessed using the Hagberg Falling Number (HFN) method, which is a batch analysis. Hyperspectral imaging (HSI) can provide analysis at the single grain level with potential for improved performance. The present paper deals with the development and application of calibrations obtained using an HSI system working in the near infrared (NIR) region (~900–2500 nm) and reference measurements of HFN. A partial least squares regression calibration has been built using 425 wheat samples with a HFN range of 62–318 s, including field and laboratory pre-germinated samples placed under wet conditions. Two different approaches were tested to apply calibrations: i) application of the calibration to each pixel, followed by calculation of the average of the resulting values for each object (kernel); ii) calculation of the average spectrum for each object, followed by application of the calibration to the mean spectrum. The calibration performance achieved for HFN (R2 = 0.6; RMSEC ~ 50 s; RMSEP ~ 63 s) compares favourably with other studies using NIR spectroscopy. Linear spectral pre-treatments lead to similar results when applying the two methods, while non-linear treatments such as standard normal variant showed obvious differences between these approaches. A classification model based on linear discriminant analysis (LDA) was also applied to segregate wheat kernels into low (250 s) HFN groups. LDA correctly classified 86.4% of the samples, with a classification accuracy of 97.9% when using HFN threshold of 150 s. These results are promising in terms of wheat quality assessment using a rapid and non-destructive technique which is able to analyse wheat properties on a single-kernel basis, and to classify samples as acceptable or unacceptable for flour production

    GaN directional couplers for integrated quantum photonics

    Full text link
    Large cross-section GaN waveguides are proposed as a suitable architecture to achieve integrated quantum photonic circuits. Directional couplers with this geometry have been designed with aid of the beam propagation method and fabricated using inductively coupled plasma etching. Scanning electron microscopy inspection shows high quality facets for end coupling and a well defined gap between rib pairs in the coupling region. Optical characterization at 800 nm shows single-mode operation and coupling-length-dependent splitting ratios. Two photon interference of degenerate photon pairs has been observed in the directional coupler by measurement of the Hong-Ou-Mandel dip with 96% visibility.Comment: 4 pages, 5 figure

    Volatile hydrocarbons inhibit methanogenic crude oil degradation

    Get PDF
    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5-nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12-nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12-nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers

    Robot Reliability Through Fuzzy Markov Models

    Get PDF
    In the past few years, new applications of robots have increased the importance of robotic reliability and fault tolerance. Standard approaches of reliability engineering rely on the probability model, which is often inappropriate for this task due to a lack of sufficient probabilistic information during the design and prototyping phases. Fuzzy logic offers an alternative to the probability paradigm, possibility, that is much more appropriate to reliability in the robotic context.National Science FoundationNASAOffice of Naval ResearchSandia National Laborator

    Correlation of electrical and structural properties of Au contacts to KOH treated n-GaN

    Get PDF
    A correlated current-voltage (I-V), electron beam induced conductivity (EBIC) and X-ray photoelectron spectroscopy (XPS) study of Au contacts to KOH treated n-type GaN is presented. A strong degradation of I-V characteristics occurs following the KOH treatment, mirrored in a reduction in the magnitude of the EBIC current, even though the EBIC images look visibly unaltered. XPS demonstrates a modification in the surfaces states, e.g. resulting in a –0.3eV shift in the binding energy of Ga3d for MBE GaN following KOH processing

    Printing stable liquid tracks on a surface with finite receding contact angle.

    Get PDF
    We have used high-speed imaging to study the formation of liquid tracks on a surface with nonzero receding contact angle, by the sequential deposition of liquid drops. For small drop spacing we found good agreement with the track morphology predicted by an existing line stability model. In addition, we confirmed definitively the preferential drop-to-bead fluid flow and the predicted drop spreading variation in the scalloped line and paired bead formation regimes. However, we found that without accounting for drop impact inertia, the model underestimated the maximum drop spreading radii and, hence, the instantaneous track width. In addition, the printed track became stable at larger drop spacing, in contrast to the expected behavior. We believe that the destabilizing effect of a receding contact line may be minimized when track radii, as predicted by volume conservation and drop-bead coalescence dynamics, converge as the drop spacing increases. An increase in viscous dissipation and a reduction of the capillary-driven flow may be the additional stabilization mechanisms. The latter may also be responsible for achieving a stable and symmetrical track when printing with a shorter interval (higher print frequency) at a given drop spacing.This project was supported by the UK Engineering and Physical Sciences Research Council and industrial partners in the Programme Grant number EP/H018913/1 ‘Innovation in Industrial Inkjet Technology’.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/la502490p
    • …
    corecore