1,347 research outputs found

    Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica.

    Get PDF
    Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants) and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria

    Stroke patients admitted within normal working hours are more likely to achieve process standards and to have better outcomes

    Get PDF
    Acknowledgements The authors are grateful to David Murphy of the SSCA for providing data and to Lynsey Waugh of ISD Scotland for linking the SSCA data with General Register Office data. The authors also acknowledge the help of all who enter data into SSCA. Funding This study was funded by Chest, Heart and Stroke Scotland (Grant no R14/A156). The SSCA is funded by NHS Scotland via ISD.Peer reviewedPublisher PD

    The Effect of Agenda for Change on the Career Progression of the Radiographic Workforce 2009

    Get PDF
    Report compiled by the University of Hertfordshire in collaboration with the Inst for Employment Studies and Oxford Radcliffe Hospitals NHS Trust for the Society and College of RadiographersFinal Published versio

    The Enchanted Dancer.

    Get PDF
    Sheet musichttps://scholarsjunction.msstate.edu/cht-sheet-music/10435/thumbnail.jp

    Learning 21st century science in context with mobile technologies

    Get PDF
    The paper describes a project to support personal inquiry learning with handheld and desktop technology between formal and informal settings. It presents a trial of the technology and learning across a school classroom, sports hall, and library. The main aim of the study was to incorporate inquiry learning activities within an extended school science environment in order to investigate opportunities for technological mediations and to extract initial recommendations for the design of mobile technology to link inquiry learning across different contexts. A critical incident analysis was carried out to identify learning breakdowns and breakthroughs that led to design implications. The main findings are the opportunities that a combination of mobile and fixed technology bring to: manage the formation of groups, display live visualisations of student and teacher data on a shared screen to facilitate motivation and personal relevance, incorporate broader technical support, provide context-specific guidance on the sequence, reasons and aims of learning activities, offer opportunities to micro-sites for reflection and learning in the field, to explicitly support appropriation of data within inquiry and show the relation between specific activities and the general inquiry process

    The Enzymes of Biotin Dependent CO(2) Metabolism: What Structures Reveal about Their Reaction Mechanisms

    Get PDF
    Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO2 carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis

    Evaluation of the Terminal Area Precision Scheduling and Spacing System for Performance-Based Navigation Arrivals

    Get PDF
    The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and Required Navigation Performance with the particular capability known as Radius-to-Fix (RNP-RF) approaches to a short final were used. The purpose of this simulation was to get feedback on how current operations could benefit with the TAPSS system and also to evaluate the efficacy of the advisory tools to support the broader use of PBN in the US National Airspace System. For this NASA-FAA joint experiment, an Air Traffic Control laboratory at NASA Ames was arranged to simulate arrivals into DAL in Instrument Meteorological Conditions utilizing parallel dependent approaches, with two feeder positions that handed off traffic to one final position. Four FAA controllers participated, alternately covering these three positions. All participants were Full-Performance Level terminal controllers and members of the National Air Traffic Controllers Association. During the simulation, PBN arrival operations were compared and contrasted in three conditions. They were the Baseline, where none of the TAPSS systems TRACON controller decision support advisories were provided, the Limited Advisories, reflecting the existing but dormant capabilities of the current terminal automation equipment with providing a subset of the TAPSS systems advisories; numerical delay, landing sequence, and runway assignment information, and the Full Advisories, with providing the following in addition to the ones in the Limited condition; trajectory slot markers, timelines of estimated times of arrivals and sche

    Flying Schedule-Matching Descents to Explore Flight Crews' Perceptions of Their Load and Task Feasibility

    Get PDF
    Multiple studies have investigated the development and use of ground-based (controller) tools to manage and schedule traffic in future terminal airspace. No studies have investigated the impacts that such tools (and concepts) could have on the flight-deck. To begin to redress the balance, an exploratory study investigated the procedures and actions of ten Boeing-747-400 crews as they flew eight continuous descent approaches in the Los Angeles terminal airspace, with the descents being controlled using speed alone. Although the study was exploratory in nature, four variables were manipulated: speed changes, route constraints, clearance phraseology, and winds. Despite flying the same scenarios with the same events and timing, there was at least a 50 second difference in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The primary focus of this paper is the potential impact of ground scheduling tools on the flight crews performance and procedures. Crews reported "moderate to low" workload, on average; however, short periods of intense and high workload were observed. The non-flying pilot often reported a higher level of workload than the flying-pilot, which may be due to their increased interaction with the Flight Management Computer, when using the aircraft automation to assist with managing the descent clearances. It is concluded that ground-side tools and automation may have a larger impact on the current-day flight-deck than was assumed and that studies investigating this impact should continue in parallel with controller support tool development

    ATD-1 Operational Integration Assessment Final Report

    Get PDF
    The FAA and NASA conducted an Operational Integration Assessment (OIA) of a prototype Terminal Sequencing and Spacing (formerly TSS, now TSAS) system at the FAA's William J. Hughes Technical Center (WJHTC). The OIA took approximately one year to plan and execute, culminating in a formal data collection, referred to as the Run for Record, from May 12-21, 2015. This report presents quantitative and qualitative results from the Run for Record

    Competitive interactions moderate the effects of elevated temperature and atmospheric CO2 on the health and functioning of oysters

    Get PDF
    Global increases in sea temperatures and atmospheric concentrations of CO2 may affect the health of calcifying shellfish. Little is known, however, about how competitive inter actions within and between species may influence how species respond to multiple stressors. We experimentally assessed separate and combined effects of temperature (12 or 16°C) and atmospheric CO2 concentrations (400 and 1000 ppm) on the health and biological functioning of native (Ostrea edulis) and invasive (Crassostrea gigas) oysters held alone and in intraspecific or inter specific mixtures. We found evidence of reduced phagocytosis under elevated CO2 and, when combined with increased temperature, a reduction in the number of circulating haemocytes. Generally, C. gigas showed lower respiration rates relative to O. edulis when the species were in intraspecific or interspecific mixtures. In contrast, O. edulis showed a higher respiration rate relative to C. gigas when held in an interspecific mixture and exhibited lower clearance rates when held in intraspecific or interspecific mixtures. Overall, clearance rates of C. gigas were consistently greater than those of O. edulis. Collectively, our findings indicate that a species’ ability to adapt metabolic processes to environmental conditions can be modified by biotic context and may make some species (here, C. gigas) competitively superior and less vulnerable to future climatic scenarios at local scales. If these conclusions are generic, the relative role of species interactions, and other biotic parameters, in altering the outcomes of climate change will require much greater research emphasis
    corecore