436 research outputs found

    Kinetics of Proton Transport into Influenza Virions by the Viral M2 Channel

    Get PDF
    M2 protein of influenza A viruses is a tetrameric transmembrane proton channel, which has essential functions both early and late in the virus infectious cycle. Previous studies of proton transport by M2 have been limited to measurements outside the context of the virus particle. We have developed an in vitro fluorescence-based assay to monitor internal acidification of individual virions triggered to undergo membrane fusion. We show that rimantadine, an inhibitor of M2 proton conductance, blocks the acidification-dependent dissipation of fluorescence from a pH-sensitive virus-content probe. Fusion-pore formation usually follows internal acidification but does not require it. The rate of internal virion acidification increases with external proton concentration and saturates with a pKm of ∼4.7. The rate of proton transport through a single, fully protonated M2 channel is approximately 100 to 400 protons per second. The saturating proton-concentration dependence and the low rate of internal virion acidification derived from authentic virions support a transporter model for the mechanism of proton transfer

    The strategic importance of top management resistance:Extending Alfred D. Chandler

    Get PDF
    We investigate the role of top management resistance against bottom-up initiatives for strategic change. While resistance has been mostly considered leading to inertia and rigidity by maintaining a particular strategic path, some scholars make the counterintuitive point that resistance could also be a facilitator of change. In this essay, we argue that such a generative perspective of top management resistance has important implications for strategy research. To do so, we draw on Alfred D. Chandler’s historic account of the emergence of the M-form at DuPont at the beginning of the 20th century. Based on this case, we illustrate three generative mechanisms of top management resistance for strategic change: the reframing, restructuring and the recoupling of strategic initiatives. We build on these generative mechanisms in order to develop implications for future research

    jMOTU and Taxonerator: Turning DNA Barcode Sequences into Annotated Operational Taxonomic Units

    Get PDF
    BACKGROUND: DNA barcoding and other DNA sequence-based techniques for investigating and estimating biodiversity require explicit methods for associating individual sequences with taxa, as it is at the taxon level that biodiversity is assessed. For many projects, the bioinformatic analyses required pose problems for laboratories whose prime expertise is not in bioinformatics. User-friendly tools are required for both clustering sequences into molecular operational taxonomic units (MOTU) and for associating these MOTU with known organismal taxonomies. RESULTS: Here we present jMOTU, a Java program for the analysis of DNA barcode datasets that uses an explicit, determinate algorithm to define MOTU. We demonstrate its usefulness for both individual specimen-based Sanger sequencing surveys and bulk-environment metagenetic surveys using long-read next-generation sequencing data. jMOTU is driven through a graphical user interface, and can analyse tens of thousands of sequences in a short time on a desktop computer. A companion program, Taxonerator, that adds traditional taxonomic annotation to MOTU, is also presented. Clustering and taxonomic annotation data are stored in a relational database, and are thus amenable to subsequent data mining and web presentation. CONCLUSIONS: jMOTU efficiently and robustly identifies the molecular taxa present in survey datasets, and Taxonerator decorates the MOTU with putative identifications. jMOTU and Taxonerator are freely available from http://www.nematodes.org/

    A People’s History of Leisure Studies : Old Knowledge, New Knowledge and The Philadelphia Negro as a Foundational Text

    Get PDF
    There is a great realization that a professor teaching an introductory or philosophical foundations course in the field of leisure studies comes to, if that professor may not be from the dominant culture of most Western societies. This realization is as stark as their numerical presence in their respective departments. Why are the philosophical foundations of the field devoid of the experiences, voices, and perspectives populations of color, or even more broadly, the populations of the global majority? And, why is there an absence of historical discussions on the field’s role in perpetrating or condoning activities that hindered or constrained populations of color full access, enjoyment, and articulation of leisure? As we move forward in the field more globally, thinking and discussing the new and progressive ways that we can conceive the sociology of leisure, it is imperative that we rethink our philosophical foundations in reconciliation of the potential harm it may have caused (and may continue to harm) and the actual good it can invoke in assisting the myriad of scholars who are pushing more progressive efforts for a critical leisure paradigm (Spracklen, Lashua, Sharpe and Swain, 2017). The objectives of this manuscript are: 1) to briefly categorize the research in the field on Race and ethnicity; 2) to outline the key canonical texts of the field; 3) to consider and reconceptualize a racially and ethnically inclusive foundation for the field utilizing The Philadelphia Negro: A Social Study as an example; and, 4) to identify some of the specific areas that this change and inclusion would impact or realign the field’s history

    Host mobility key management in dynamic secure group communication

    Get PDF
    The key management has a fundamental role in securing group communications taking place over vast and unprotected networks. It is concerned with the distribution and update of the keying materials whenever any changes occur in the group membership. Wireless mobile environments enable members to move freely within the networks, which causes more difficulty to design efficient and scalable key management protocols. This is partly because both member location dynamic and group membership dynamic must be managed concurrently, which may lead to significant rekeying overhead. This paper presents a hierarchical group key management scheme taking the mobility of members into consideration intended for wireless mobile environments. The proposed scheme supports the mobility of members across wireless mobile environments while remaining in the group session with minimum rekeying transmission overhead. Furthermore, the proposed scheme alleviates 1-affect-n phenomenon, single point of failure, and signaling load caused by moving members at the core network. Simulation results shows that the scheme surpasses other existing efforts in terms of communication overhead and affected members. The security requirements studies also show the backward and forward secrecy is preserved in the proposed scheme even though the members move between areas

    Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803

    Get PDF
    In cyanobacteria, photorespiratory 2-phosphoglycolate (2PG) metabolism is mediated by three different routes, including one route involving the glycine decarboxylase complex (Gcv). It has been suggested that, in addition to conversion of 2PG into non-toxic intermediates, this pathway is important for acclimation to high-light. The photoreduction of O2 (Mehler reaction), which is mediated by two flavoproteins Flv1 and Flv3 in cyanobacteria, dissipates excess reductants under high-light by the four electron-reduction of oxygen to water. Single and double mutants defective in these processes were constructed to investigate the relation between photorespiratory 2PG-metabolism and the photoreduction of O2 in the cyanobacterium Synechocystis sp. PCC 6803. The single mutants Δflv1, Δflv3, and ΔgcvT, as well as the double mutant Δflv1/ΔgcvT, were completely segregated but not the double mutant Δflv3/ΔgcvT, suggesting that the T-protein subunit of the Gcv (GcvT) and Flv3 proteins cooperate in an essential process. This assumption is supported by the following results: (1) The mutant Δflv3/ΔgcvT showed a considerable longer lag phase and sometimes bleached after shifts from slow (low light, air CO2) to rapid (standard light, 5% CO2) growing conditions. (2) Photoinhibition experiments indicated a decreased ability of the mutant Δflv3/ΔgcvT to cope with high-light. (3) Fluorescence measurements showed that the photosynthetic electron chain is reduced in this mutant. Our data suggest that the photorespiratory 2PG-metabolism and the photoreduction of O2, particularly that catalyzed by Flv3, cooperate during acclimation to high-light stress in cyanobacteria

    Genetic variability in CYP3A4 and CYP3A5 in primary liver, gastric and colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug-metabolizing enzymes play a role in chemical carcinogenesis through enzymatic activation of procarcinogens to biologically reactive metabolites. The role of gene polymorphisms of several cytochrome P450 enzymes in digestive cancer risk has been extensively investigated. However, the drug-metabolizing enzymes with the broader substrate specificity, CYP3A4 and CYP3A5, have not been analyzed so far. This study aims to examine associations between common CYP3A4 and CYP3A5 polymorphisms and digestive cancer risk.</p> <p>Methods</p> <p>CYP3A4 and CYP3A5 genotypes were determined in 574 individuals including 178 patients with primary liver cancer, 82 patients with gastric cancer, 151 patients with colorectal cancer, and 163 healthy individuals.</p> <p>Results</p> <p>The variant allele frequencies for patients with liver cancer, gastric cancer, colorectal cancer and healthy controls, respectively, were: <it>CYP3A4*1B</it>, 4.8 % (95% C.I. 2.6–7.0), 3.7 % (0.8–6.6) 4.3% (2.0–6.6) and 4.3% (2.1–6.5); <it>CYP3A5*3</it>, 91.8 % (93.0–97.4), 95.7% (92.6–98.8), 91.7% (88.6–94.8) and 90.8% (87.7–93.9). The association between <it>CYP3A4*1B </it>and <it>CYP3A5*3 </it>variant alleles did not significantly differ among patients and controls. No differences in genotypes, allele frequencies, or association between variant alleles were observed with regard to gender, age at diagnosis, tumour site or stage.</p> <p>Conclusion</p> <p>Common polymorphisms on <it>CYP3A4 </it>and <it>CYP3A5 </it>genes do not modify the risk of developing digestive cancers in Western Europe.</p
    corecore