1,612 research outputs found

    Noncommutative vector bundles over fuzzy CP^N and their covariant derivatives

    Get PDF
    We generalise the construction of fuzzy CP^N in a manner that allows us to access all noncommutative equivariant complex vector bundles over this space. We give a simplified construction of polarization tensors on S^2 that generalizes to complex projective space, identify Laplacians and natural noncommutative covariant derivative operators that map between the modules that describe noncommuative sections. In the process we find a natural generalization of the Schwinger-Jordan construction to su(n) and identify composite oscillators that obey a Heisenberg algebra on an appropriate Fock space.Comment: 34 pages, v2 contains minor corrections to the published versio

    Fuzzy Scalar Field Theory as a Multitrace Matrix Model

    Get PDF
    We develop an analytical approach to scalar field theory on the fuzzy sphere based on considering a perturbative expansion of the kinetic term. This expansion allows us to integrate out the angular degrees of freedom in the hermitian matrices encoding the scalar field. The remaining model depends only on the eigenvalues of the matrices and corresponds to a multitrace hermitian matrix model. Such a model can be solved by standard techniques as e.g. the saddle-point approximation. We evaluate the perturbative expansion up to second order and present the one-cut solution of the saddle-point approximation in the large N limit. We apply our approach to a model which has been proposed as an appropriate regularization of scalar field theory on the plane within the framework of fuzzy geometry.Comment: 1+25 pages, replaced with published version, minor improvement

    Functional Methods in Stochastic Systems

    Full text link
    Field-theoretic construction of functional representations of solutions of stochastic differential equations and master equations is reviewed. A generic expression for the generating function of Green functions of stochastic systems is put forward. Relation of ambiguities in stochastic differential equations and in the functional representations is discussed. Ordinary differential equations for expectation values and correlation functions are inferred with the aid of a variational approach.Comment: Plenary talk presented at Mathematical Modeling and Computational Science. International Conference, MMCP 2011, Star\'a Lesn\'a, Slovakia, July 4-8, 201

    Mitigation of large-scale organic waste damage incorporating a demonstration of a closed loop conversion of poultry waste to energy at the point of source (2000-LS-1-M2) Final Report

    Get PDF
    peer-reviewedThe increase in the world population and urbanisation, have changed the way the world produces food. As the demand for cheap and readily available food in the developed world increases, high-density, intensive farming practices have replaced subsistence farming to allow for the mass production of food. An unavoidable consequence of these farming\ud practices is the generation of significant quantities of organic waste

    Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere

    Get PDF
    We address a detailed non-perturbative numerical study of the scalar theory on the fuzzy sphere. We use a novel algorithm which strongly reduces the correlation problems in the matrix update process, and allows the investigation of different regimes of the model in a precise and reliable way. We study the modes associated to different momenta and the role they play in the ``striped phase'', pointing out a consistent interpretation which is corroborated by our data, and which sheds further light on the results obtained in some previous works. Next, we test a quantitative, non-trivial theoretical prediction for this model, which has been formulated in the literature: The existence of an eigenvalue sector characterised by a precise probability density, and the emergence of the phase transition associated with the opening of a gap around the origin in the eigenvalue distribution. The theoretical predictions are confirmed by our numerical results. Finally, we propose a possible method to detect numerically the non-commutative anomaly predicted in a one-loop perturbative analysis of the model, which is expected to induce a distortion of the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study of the eigenvalue distribution, added figures, tables and references, typos corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references added, technical details about the tests at small matrix size skipped, version published in JHE

    Quantum effective potential for U(1) fields on S^2_L X S^2_L

    Full text link
    We compute the one-loop effective potential for noncommutative U(1) gauge fields on S^2_L X S^2_L. We show the existence of a novel phase transition in the model from the 4-dimensional space S^2_L X S^2_L to a matrix phase where the spheres collapse under the effect of quantum fluctuations. It is also shown that the transition to the matrix phase occurs at infinite value of the gauge coupling constant when the mass of the two normal components of the gauge field on S^2_L X S^2_L is sent to infinity.Comment: 13 pages. one figur

    Probing the fuzzy sphere regularisation in simulations of the 3d \lambda \phi^4 model

    Get PDF
    We regularise the 3d \lambda \phi^4 model by discretising the Euclidean time and representing the spatial part on a fuzzy sphere. The latter involves a truncated expansion of the field in spherical harmonics. This yields a numerically tractable formulation, which constitutes an unconventional alternative to the lattice. In contrast to the 2d version, the radius R plays an independent r\^{o}le. We explore the phase diagram in terms of R and the cutoff, as well as the parameters m^2 and \lambda. Thus we identify the phases of disorder, uniform order and non-uniform order. We compare the result to the phase diagrams of the 3d model on a non-commutative torus, and of the 2d model on a fuzzy sphere. Our data at strong coupling reproduce accurately the behaviour of a matrix chain, which corresponds to the c=1-model in string theory. This observation enables a conjecture about the thermodynamic limit.Comment: 31 pages, 15 figure

    Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    Get PDF
    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron–oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T₂ MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging
    corecore