4,310 research outputs found
Quantum fluctuations of a vortex in an optical lattice
Using a variational ansatz for the wave function of the Bose-Einstein
condensate, we develop a quantum theory of vortices and quadrupole modes in a
one-dimensional optical lattice. We study the coupling between the quadrupole
modes and Kelvin modes, which turns out to be formally analogous to the theory
of parametric processes in quantum optics. This leads to the possibility of
squeezing vortices. We solve the quantum multimode problem for the Kelvin modes
and quadrupole modes numerically and find properties that cannot be explained
with a simple linear-response theory.Comment: final version, minor change
Vortex-line solitons in a periodically modulated Bose gas
We study the nonlinear excitations of a vortex-line in a Bose-Einstein
condensate trapped in a one-dimensional optical lattice. We find that the
classical Euler dynamics of the vortex results in a description of the vortex
line in terms of a (discrete) one-dimensional Gross-Pitaevskii equation, which
allows for both bright and gray soliton solutions. We discuss these solutions
in detail and predict that it is possible to create vortex-line solitons with
current experimental capabilities.Comment: minor changes, updated/corrected references, 4 pages, 3 figure
Exotic superfluid states of lattice fermions in elongated traps
We present real-space dynamical mean-field theory calculations for
attractively interacting fermions in three-dimensional lattices with elongated
traps. The critical polarization is found to be 0.8, regardless of the trap
elongation. Below the critical polarization, we find unconventional superfluid
structures where the polarized superfluid and
Fulde-Ferrell-Larkin-Ovchinnikov-type states emerge across the entire core
region
Socioeconomic Inequalities in Mortality Rates in Old Age in the World Health Organization Europe Region
Socioeconomic adversity is among the foremost fundamental causes of human suffering, and this is no less true in old age. Recent reports on socioeconomic inequalities in mortality rate in old age suggest that a low socioeconomic position continues to increase the risk of death even among the oldest old. We aimed to examine the evidence for socioeconomic mortality rate inequalities in old age, including information about associations with various indicators of socioeconomic position and for various geographic locations within the World Health Organization Region for Europe. The articles included in this review leave no doubt that inequalities in mortality rate by socioeconomic position persist into the oldest ages for both men and women in all countries for which information is available, although the relative risk measures observed were rarely higher than 2.00. Still, the available evidence base is heavily biased geographically, inasmuch as it is based largely on national studies from Nordic and Western European countries and local studies from urban areas in Southern Europe. This bias will hamper the design of European-wide policies to reduce inequalities in mortality rate. We call for a continuous update of the empiric evidence on socioeconomic inequalities in mortality rate
Quantum theory of a vortex line in an optical lattice
We investigate the quantum theory of a vortex line in a stack of
weakly-coupled two-dimensional Bose-Einstein condensates, that is created by a
one-dimensional optical lattice. We derive the dispersion relation of the
Kelvin modes of the vortex line and also study the coupling between the Kelvin
modes and the quadrupole modes. We solve the coupled dynamics of the vortex
line and the quadrupole modes, both classically as well as quantum
mechanically. The quantum mechanical solution reveals the possibility of
generating nonequilibrium squeezed vortex states by strongly driving the
quadrupole modes.Comment: Minor changes in response to a referee repor
Spontaneous squeezing of a vortex in an optical lattice
We study the equilibrium states of a vortex in a Bose-Einstein condensate in
a one-dimensional optical lattice. We find that quantum effects can be
important and that it is even possible for the vortex to be strongly squeezed,
which reflects itself in a different quantum mechanical uncertainty of the
vortex position in two orthogonal directions. The latter is observable by
measuring the atomic density after an expansion of the Bose-Einstein condensate
in the lattice.Comment: 8 pages, 3 figures, more details added, some new citation
Bose-Einstein condensation in shallow traps
In this paper we study the properties of Bose-Einstein condensates in shallow
traps. We discuss the case of a Gaussian potential, but many of our results
apply also to the traps having a small quadratic anharmonicity. We show the
errors introduced when a Gaussian potential is approximated with a parabolic
potential, these errors can be quite large for realistic optical trap parameter
values. We study the behavior of the condensate fraction as a function of trap
depth and temperature and calculate the chemical potential of the condensate in
a Gaussian trap. Finally we calculate the frequencies of the collective
excitations in shallow spherically symmetric and 1D traps.Comment: 6 pages, 4 figure
Theory of spin-2 Bose-Einstein condensates: spin-correlations, magnetic response, and excitation spectra
The ground states of Bose-Einstein condensates of spin-2 bosons are
classified into three distinct (ferromagnetic, ^^ ^^ antiferromagnetic", and
cyclic) phases depending on the s-wave scattering lengths of binary collisions
for total-spin 0, 2, and 4 channels. Many-body spin correlations and magnetic
response of the condensate in each of these phases are studied in a mesoscopic
regime, while low-lying excitation spectra are investigated in the hermodynamic
regime. In the mesoscopic regime, where the system is so tightly confined that
the spatial degrees of freedom are frozen, the exact, many-body ground state
for each phase is found to be expressed in terms of the creation operators of
pair or trio bosons having spin correlations. These pairwise and trio-wise
units are shown to bring about some unique features of spin-2 BECs such as a
huge jump in magnetization from minimum to maximum possible values and the
robustness of the minimum-magnetization state against an applied agnetic field.
In the thermodynamic regime, where the system is spatially uniform, low-lying
excitation spectra in the presence of magnetic field are obtained analytically
using the Bogoliubov approximation. In the ferromagnetic phase, the excitation
spectrum consists of one Goldstone mode and four single-particle modes. In the
antiferromagnetic phase, where spin-singlet ^^ ^^ pairs" undergo Bose-Einstein
condensation, the spectrum consists of two Goldstone modes and three massive
ones, all of which become massless when magnetic field vanishes. In the cyclic
phase, where boson ^^ ^^ trios" condense into a spin-singlet state, the
spectrum is characterized by two Goldstone modes, one single-particle mode
having a magnetic-field-independent energy gap, and a gapless single-particle
mode that becomes massless in the absence of magnetic field.Comment: 28 pages, 4 figure
Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules
We consider the transfer of a two-species Bose-Einstein condensate into an
optical lattice with a density such that that a Mott-insulator state with one
atom per species per lattice site is obtained in the deep lattice regime.
Depending on collision parameters the result could be either a `mixed' or a
`separated' Mott-insulator phase. Such a `mixed' two-species insulator could
then be photo-associated into an array of dipolar molecules suitable for
quantum computation or the formation of a dipolar molecular condensate. For the
case of a Rb-K two-species BEC, however, the large inter-species
scattering length makes obtaining the desired `mixed' Mott insulator phase
difficult. To overcome this difficulty we investigate the effect of varying the
lattice frequency on the mean-field interaction and find a favorable parameter
regime under which a lattice of dipolar molecules could be generated
Topological defects in spinor condensates
We investigate the structure of topological defects in the ground states of
spinor Bose-Einstein condensates with spin F=1 or F=2. The type and number of
defects are determined by calculating the first and second homotopy groups of
the order-parameter space. The order-parameter space is identified with a set
of degenerate ground state spinors. Because the structure of the ground state
depends on whether or not there is an external magnetic field applied to the
system, defects are sensitive to the magnetic field. We study both cases and
find that the defects in zero and non-zero field are different.Comment: 10 pages, 1 figure. Published versio
- …
