4,310 research outputs found

    Quantum fluctuations of a vortex in an optical lattice

    Full text link
    Using a variational ansatz for the wave function of the Bose-Einstein condensate, we develop a quantum theory of vortices and quadrupole modes in a one-dimensional optical lattice. We study the coupling between the quadrupole modes and Kelvin modes, which turns out to be formally analogous to the theory of parametric processes in quantum optics. This leads to the possibility of squeezing vortices. We solve the quantum multimode problem for the Kelvin modes and quadrupole modes numerically and find properties that cannot be explained with a simple linear-response theory.Comment: final version, minor change

    Vortex-line solitons in a periodically modulated Bose gas

    Full text link
    We study the nonlinear excitations of a vortex-line in a Bose-Einstein condensate trapped in a one-dimensional optical lattice. We find that the classical Euler dynamics of the vortex results in a description of the vortex line in terms of a (discrete) one-dimensional Gross-Pitaevskii equation, which allows for both bright and gray soliton solutions. We discuss these solutions in detail and predict that it is possible to create vortex-line solitons with current experimental capabilities.Comment: minor changes, updated/corrected references, 4 pages, 3 figure

    Exotic superfluid states of lattice fermions in elongated traps

    Full text link
    We present real-space dynamical mean-field theory calculations for attractively interacting fermions in three-dimensional lattices with elongated traps. The critical polarization is found to be 0.8, regardless of the trap elongation. Below the critical polarization, we find unconventional superfluid structures where the polarized superfluid and Fulde-Ferrell-Larkin-Ovchinnikov-type states emerge across the entire core region

    Socioeconomic Inequalities in Mortality Rates in Old Age in the World Health Organization Europe Region

    No full text
    Socioeconomic adversity is among the foremost fundamental causes of human suffering, and this is no less true in old age. Recent reports on socioeconomic inequalities in mortality rate in old age suggest that a low socioeconomic position continues to increase the risk of death even among the oldest old. We aimed to examine the evidence for socioeconomic mortality rate inequalities in old age, including information about associations with various indicators of socioeconomic position and for various geographic locations within the World Health Organization Region for Europe. The articles included in this review leave no doubt that inequalities in mortality rate by socioeconomic position persist into the oldest ages for both men and women in all countries for which information is available, although the relative risk measures observed were rarely higher than 2.00. Still, the available evidence base is heavily biased geographically, inasmuch as it is based largely on national studies from Nordic and Western European countries and local studies from urban areas in Southern Europe. This bias will hamper the design of European-wide policies to reduce inequalities in mortality rate. We call for a continuous update of the empiric evidence on socioeconomic inequalities in mortality rate

    Quantum theory of a vortex line in an optical lattice

    Full text link
    We investigate the quantum theory of a vortex line in a stack of weakly-coupled two-dimensional Bose-Einstein condensates, that is created by a one-dimensional optical lattice. We derive the dispersion relation of the Kelvin modes of the vortex line and also study the coupling between the Kelvin modes and the quadrupole modes. We solve the coupled dynamics of the vortex line and the quadrupole modes, both classically as well as quantum mechanically. The quantum mechanical solution reveals the possibility of generating nonequilibrium squeezed vortex states by strongly driving the quadrupole modes.Comment: Minor changes in response to a referee repor

    Spontaneous squeezing of a vortex in an optical lattice

    Full text link
    We study the equilibrium states of a vortex in a Bose-Einstein condensate in a one-dimensional optical lattice. We find that quantum effects can be important and that it is even possible for the vortex to be strongly squeezed, which reflects itself in a different quantum mechanical uncertainty of the vortex position in two orthogonal directions. The latter is observable by measuring the atomic density after an expansion of the Bose-Einstein condensate in the lattice.Comment: 8 pages, 3 figures, more details added, some new citation

    Bose-Einstein condensation in shallow traps

    Full text link
    In this paper we study the properties of Bose-Einstein condensates in shallow traps. We discuss the case of a Gaussian potential, but many of our results apply also to the traps having a small quadratic anharmonicity. We show the errors introduced when a Gaussian potential is approximated with a parabolic potential, these errors can be quite large for realistic optical trap parameter values. We study the behavior of the condensate fraction as a function of trap depth and temperature and calculate the chemical potential of the condensate in a Gaussian trap. Finally we calculate the frequencies of the collective excitations in shallow spherically symmetric and 1D traps.Comment: 6 pages, 4 figure

    Theory of spin-2 Bose-Einstein condensates: spin-correlations, magnetic response, and excitation spectra

    Full text link
    The ground states of Bose-Einstein condensates of spin-2 bosons are classified into three distinct (ferromagnetic, ^^ ^^ antiferromagnetic", and cyclic) phases depending on the s-wave scattering lengths of binary collisions for total-spin 0, 2, and 4 channels. Many-body spin correlations and magnetic response of the condensate in each of these phases are studied in a mesoscopic regime, while low-lying excitation spectra are investigated in the hermodynamic regime. In the mesoscopic regime, where the system is so tightly confined that the spatial degrees of freedom are frozen, the exact, many-body ground state for each phase is found to be expressed in terms of the creation operators of pair or trio bosons having spin correlations. These pairwise and trio-wise units are shown to bring about some unique features of spin-2 BECs such as a huge jump in magnetization from minimum to maximum possible values and the robustness of the minimum-magnetization state against an applied agnetic field. In the thermodynamic regime, where the system is spatially uniform, low-lying excitation spectra in the presence of magnetic field are obtained analytically using the Bogoliubov approximation. In the ferromagnetic phase, the excitation spectrum consists of one Goldstone mode and four single-particle modes. In the antiferromagnetic phase, where spin-singlet ^^ ^^ pairs" undergo Bose-Einstein condensation, the spectrum consists of two Goldstone modes and three massive ones, all of which become massless when magnetic field vanishes. In the cyclic phase, where boson ^^ ^^ trios" condense into a spin-singlet state, the spectrum is characterized by two Goldstone modes, one single-particle mode having a magnetic-field-independent energy gap, and a gapless single-particle mode that becomes massless in the absence of magnetic field.Comment: 28 pages, 4 figure

    Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules

    Full text link
    We consider the transfer of a two-species Bose-Einstein condensate into an optical lattice with a density such that that a Mott-insulator state with one atom per species per lattice site is obtained in the deep lattice regime. Depending on collision parameters the result could be either a `mixed' or a `separated' Mott-insulator phase. Such a `mixed' two-species insulator could then be photo-associated into an array of dipolar molecules suitable for quantum computation or the formation of a dipolar molecular condensate. For the case of a 87^{87}Rb-41^{41}K two-species BEC, however, the large inter-species scattering length makes obtaining the desired `mixed' Mott insulator phase difficult. To overcome this difficulty we investigate the effect of varying the lattice frequency on the mean-field interaction and find a favorable parameter regime under which a lattice of dipolar molecules could be generated

    Topological defects in spinor condensates

    Full text link
    We investigate the structure of topological defects in the ground states of spinor Bose-Einstein condensates with spin F=1 or F=2. The type and number of defects are determined by calculating the first and second homotopy groups of the order-parameter space. The order-parameter space is identified with a set of degenerate ground state spinors. Because the structure of the ground state depends on whether or not there is an external magnetic field applied to the system, defects are sensitive to the magnetic field. We study both cases and find that the defects in zero and non-zero field are different.Comment: 10 pages, 1 figure. Published versio
    corecore