2,087 research outputs found

    A Novel Restorative Pulmonary Valve Conduit : early Outcomes of Two Clinical Trials

    Get PDF
    Objectives: We report the first use of a biorestorative valved conduit (Xeltis pulmonary valve-XPV) in children. Based on early follow-up data the valve design was modified; we report on the comparative performance of the two designs at 12 months post-implantation. Methods: Twelve children (six male) median age 5 (2 to 12) years and weight 17 (10 to 43) kg, had implantation of the first XPV valve design (XPV-1, group 1; 16 mm (n = 5), and 18mm (n = 7). All had had previous surgery. Based on XPV performance at 12 months, the leaflet design was modified and an additional six children (five male) with complex malformations, median age 5 (3 to 9) years, and weight 21 (14 to 29) kg underwent implantation of the new XPV (XPV-2, group 2; 18 mm in all). For both subgroups, the 12 month clinical and echocardiographic outcomes were compared. Results: All patients in both groups have completed 12 months of follow-up. All are in NYHA functional class I. Seventeen of the 18 conduits have shown no evidence of progressive stenosis, dilation or aneurysm formation. Residual gradients of >40 mm Hg were observed in three patients in group 1 due to kinking of the conduit (n = 1), and peripheral stenosis of the branch pulmonary arteries (n = 2). In group 2, one patient developed rapidly progressive stenosis of the proximal conduit anastomosis, requiring conduit replacement. Five patients in group 1 developed severe pulmonary valve regurgitation (PI) due to prolapse of valve leaflet. In contrast, only one patient in group 2 developed more than mild PI at 12 months, which was not related to leaflet prolapse. Conclusions: The XPV, a biorestorative valved conduit, demonstrated promising early clinical outcomes in humans with 17 of 18 patients being free of reintervention at 1 year. Early onset PI seen in the XPV-1 version seems to have been corrected in the XPV-2, which has led to the approval of an FDA clinical trial

    The effect of chronic kidney disease on tissue formation of in situ tissue-engineered vascular grafts

    Get PDF
    Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red +, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis. </p

    An optical coherence tomography and endothelial shear stress study of a novel bioresorbable bypass graft

    Get PDF
    Endothelial shear stress (ESS) plays a key role in the clinical outcomes in native and stented segments; however, their implications in bypass grafts and especially in a synthetic biorestorative coronary artery bypass graft are yet unclear. This report aims to examine the interplay between ESS and the morphological alterations of a biorestorative coronary bypass graft in an animal model. Computational fluid dynamics (CFD) simulation derived from the fusion of angiography and optical coherence tomography (OCT) imaging was used to reconstruct data on the luminal anatomy of a bioresorbable coronary bypass graft with an endoluminal "flap" identified during OCT acquisition. The "flap" compromised the smooth lumen surface and considerably disturbed the local flow, leading to abnormally low ESS and high oscillatory shear stress (OSI) in the vicinity of the "flap". In the presence of the catheter, the flow is more stable (median OSI 0.02384 versus 0.02635, p < 0.0001; maximum OSI 0.4612 versus 0.4837). Conversely, OSI increased as the catheter was withdrawn which can potentially cause back-and-forth motions of the "flap", triggering tissue fatigue failure. CFD analysis in this report provided sophisticated physiological information that complements the anatomic assessment from imaging enabling a complete understanding of biorestorative graft pathophysiology

    Validation of Prosthetic Mitral Regurgitation Quantification Using Novel Angiographic Platform by Mock Circulation.

    Get PDF
    This study aimed to validate a dedicated software for quantitative videodensitometric angiographic assessment of mitral regurgitation (QMR).Quantitative videodensitometric aortography of aortic regurgitation using the time-density principle is a well-documented technique, but the angiographic assessment of mitral regurgitation (MR) remains at best semi-quantitative and operator dependent.Fourteen sheep underwent surgical mitral valve replacement using 2 different prostheses. Pre-sacrifice left ventriculograms were used to assess MR fraction (MRF) using QMR and MR volume (MRV). In an independent core lab, the CAAS QMR 0.1 was used for QMR analysis. In vitro MRF and MRV were assessed in a mock circulation at a comparable cardiac output to the in vivo one by thermodilution. The correlations and agreements of in vitro and in vivo MRF, MRV, and interobserver reproducibility for QMR analysis were assessed using the averaged cardiac cycles (CCs).In vivo derived MRF by QMR strongly correlated with in vitro derived MRF, regardless of the number of the CCs analyzed (best correlation: 3 CCs y = 0.446 + 0.994x; R = 0.784; p =0.002). The mean absolute difference between in vitro derived MRF and in vivo derived MRF from 3 CCs was 0.01 ± 4.2% on Bland-Altman analysis. In vitro MRV and in vivo MRV from 3 CCs were very strongly correlated (y = 0.196 + 1.255x; R = 0.839; p 0.001). The mean absolute difference between in vitro MRV and in vivo MRV from 3 CCs was -1.4 ± 1.9 ml. There were very strong correlations of in vivo MRF between 2 independent analysts, regardless of the number of the CCs.In vivo MRF using the novel software is feasible, accurate, and highly reproducible. These promising results have led us to initiate the first human feasibility study comprising patients undergoing percutaneous mitral valve edge-to-edge repair

    Synaptic vesicle dynamic changes in a model of fragile X

    Get PDF
    __Background:__ Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. __Methods:__ Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MSE) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. __Results:__ Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. __Conclusions:__ Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS

    Quantitative aortography for assessment of aortic regurgitation in the era of percutaneous aortic valve replacement

    Get PDF
    Paravalvular leak (PVL) is a shortcoming that can erode the clinical benefits of transcatheter valve replacement (TAVR) and therefore a readily applicable method (aortography) to quantitate PVL objectively and accurately in the interventional suite is appealing to all operators. The ratio between the areas of the time-density curves in the aorta and left ventricular outflow tract (LVOT-AR) defines the regurgitation fraction (RF). This technique has been validated in a mock circulation; a single injection in diastole was further tested in porcine and ovine models. In the clinical setting, LVOT-AR was compared with trans-thoracic and trans-oesophageal echocardiography and cardiac magnetic resonance imaging. LVOT-AR > 17% discriminates mild from moderate aortic regurgitation on echocardiography and confers a poor prognosis in multiple registries, and justifies balloon post-dilatation. The LVOT-AR differentiates the individual performances of many old and novel devices and is being used in ongoing randomized trials and registries

    Associations of AMP and adenosine induced dyspnea sensation to large and small airways dysfunction in asthma

    Get PDF
    Abstract Background Bronchial provocation is often used to confirm asthma. Dyspnea sensation, however, associates poorly with the evoked drop in FEV1. Provocation tests only use the large airways parameter FEV1, although dyspnea is associated with both large- and small airways dysfunction. Aim of this study was to explore if adenosine 5′-monophosphate (AMP) and adenosine evoke an equal dyspnea sensation and if dyspnea associates better with large or small airways dysfunction. Methods We targeted large airways with AMP and small airways with dry powder adenosine in 59 asthmatic (ex)-smokers with ≥5 packyears, 14 ± 7 days apart. All subjects performed spirometry, impulse oscillometry (IOS), and Borg dyspnea score. In 36 subjects multiple breath nitrogen washout (MBNW) was additionally performed. We analyzed the association of the change (Δ) in Borg score with the change in large and small airways parameters, using univariate and multivariate linear regression analyses. MBNW was analyzed separately. Results Provocation with AMP and adenosine evoked similar levels of dyspnea. ΔFEV1 was not significantly associated with ΔBorg after either AMP or adenosine provocation, in both univariate and multivariate analyses. In multivariate linear regression, a decrease in FEF25–75 during adenosine provocation was independently associated with an increase in Borg. In the multivariate analyses for AMP provocation, no significant associations were found between ΔBorg and any large or small airways parameters. Conclusion AMP and adenosine induce equally severe dyspnea sensations. Our results suggest that dyspnea induced with dry powder adenosine is related to small airways involvement, while neither large nor small airways dysfunction was associated with AMP-induced dyspnea. Trail registration NCT01741285 at www.clinicaltrials.gov, first registered Dec 4th, 2012
    • …
    corecore